
Breaking network crypto in
popular Chinese mobile apps

Mona - CCC 2025

This talk is not just about surveillance in China

3

Adversaries

● Anyone on your network
● Your ISP
● The server’s ISP
● Every network in between
● Every state actor in between

Encryption limits network surveillance

5

Today, TLS is the de-facto standard…

Use TLS! Don’t roll your own crypto!

6

7

But what about mobile?

Today, mobile traffic surpasses web network traffic by ~2x globally.

Widespread assumption in the security community that TLS trends on web
transfer to mobile… but do they?

8

9

1. App w >1.5 billion MAU

10

1. WeChat

2. ???

3. ???

4. ???
Analyzing the Tracking Ecosystem of WeChat Mini
Programs: MMTLS Security and Information Flows
Mona Wang, Jeffrey Knockel, Pellaeon Lin, Will Greenberg, Prateek

Mittal, Jonathan Mayer
(PETS 2025)

WeChat uses MMTLS

11

What is MMTLS?
● WeChat’s custom network encryption
● Responsible for encrypting over one billion users’ network traffic
● There’s only one document published by Tencent about it on Github1

1 WeChat Mobile Development Team, 基于TLS1.3的微信安全通信协议mmtls介绍/“Introducing WeChat’s secure
communication protocol mmtls based on TLS1.3”, Github 12

How does WeChat encrypt requests?
● HTTPS → QUIC are used for large file downloads from CDNs
● MMTLS is used for everything else

○ Sending/receiving messages
○ Advertisements
○ Search
○ Payments
○ Moments
○ Analytics during Mini Program usage

13

How does WeChat encrypt requests?

MMTLS

Business-
layer

14

transport

How does WeChat encrypt requests?

Two transports: Longlink and Shortlink

Longlink

● TCP, port 8080
● Long-lived connection
● Multiple request-responses

● used for, e.g.
○ WeChat messages

15

Shortlink

● HTTP POST, port 80
● Short-lived connection
● Supports single request-response

● used for, e.g.
○ Mini program, search analytics

How does WeChat encrypt requests?

Key derivation Encryption Library

MMTLS layer DH with resumption AES-GCM with tag libwechatnetwork.so

Business-layer, logged-out Static DH AES-GCM with tag libwechatmm.so

Business-layer, logged-in Fixed key from server AES-CBC with checksum libMMProtocalJNI.so

16

How does WeChat encrypt requests?
● They’re encrypted twice

○ (and also differently if you’re logged-out)

Protobuf
data

AES-CBC w/
“session key”

WeChat request
headers

ciphertext1
ciphertext2AES-GCM w/

ECDH-derived key

MMTLS headers

“Business-layer” encryption
● Found and reported many issues
● Tencent responds and says they’d

fix them???

“MMTLS” encryption
● Added in 2016

17

18

1. WeChat

2. ~27 Chinese keyboards
(IMEs)

3. ???

4. ???
The Not-So-Silent Type: Vulnerabilities in Chinese

IME Keyboards’ Network Security Protocols
Jeffrey Knockel, Mona Wang, Zoë Reichert

ACM CCS 2024

Landscape of third-party Chinese keyboards (IMEs)

● IME: Input Method Editor
● Keyboard software
● Third-party keyboard software is

essential for typing Chinese

What’s a Chinese IME?

What’s a Chinese IME?

What’s a Chinese IME?

What’s a Chinese IME?

What’s a Chinese IME?

The advent of “cloud-based” prediction

The advent of “cloud-based” prediction

The advent of “cloud-based” prediction

The advent of “cloud-based” prediction

They are keyloggers

You Shouldn’t Collect My Secrets: Thwarting Sensitive
Keystroke Leakage in Mobile IME Apps

Jin Chen, Haibo Chen, Erick Bauman, Zhiqiang Lin, Binyu Zang, Haibing Guan
Usenix Security 2015

They are keyloggers

You Shouldn’t Collect My Secrets: Thwarting Sensitive
Keystroke Leakage in Mobile IME Apps

Jin Chen, Haibo Chen, Erick Bauman, Zhiqiang Lin, Binyu Zang, Haibing Guan
Usenix Security 2015

…this talk is not about how they are keyloggers

* Default keyboard on device

33

Sogou IME

34

Sogou IME

● K – AES key (encrypted with 1024-bit public RSA key)
● V – IV (encrypted with 1024-bit public RSA key)

RSA-bootstrapped AES…

35

Sogou IME

● K – AES key (encrypted with 1024-bit public RSA key)
● V – IV (encrypted with 1024-bit public RSA key)

RSA-bootstrapped AES…

Susceptible to a variant of a CBC padding oracle attack

36

1 {
 1: 1
 2 {
 1 {
 2: "1111_sogou_pinyin_guanwang_13.4e_1111"
 3: "13.4.0.7561"
 5: 3
 7: 1
 8: "13.4.0.7561"
 }
 7: "nihaohaohaohaohaohaohaozdaasdfffaahellocanyoureadthis"
 16: 11
 17 {
 3 {
 1: 2
 2: 1
 }
 9: 1
 10: 1
 }
 19 {
 4: "0"
 }
[...]

37

iFlytek-Android

38

[...]

iFlytek-Android

Baidu-v3-1

39

Baidu-v3-1

40

41

Samsung IME

42

Samsung IME

IME keyboard protocols

43

IME keyboard protocols

44

45

46

1. WeChat

2. ~27 Chinese IMEs

3. ~2k top mobile apps

4. ???

WireWatch: Measuring the security of proprietary network
encryption in the global Android ecosystem

Mona Wang, Jeffrey Knockel, Zoe Reichert, Prateek Mittal, Jonathan Mayer
(IEEE S&P 2025)

Research Questions

1. How common is proprietary encryption as compared to TLS?
2. How secure are these proprietary protocols?

47

Install
app

Isolate
non-TLS

traffic

Scrape popular
applications

Identify
proprietary
encryption

Simulate user
behavior

Protocol
clustering

48

How to identify proprietary encryption?

1. It doesn’t conform with existing standardized encryption (e.g. TLS,
QUIC-TLS)

2. It looks like encryption → (e.g. looks like random data)

49

How to cluster “similar” encryption?
● Encrypted data may differ, but…

○ Header data might be similar, and contain similar constants, features, etc.
○ Encoding of data consistent (e.g. Base64? Hex? Raw data?)

Header data

Random data

Header data

Random data

50

Install
app

Isolate
non-TLS

traffic

Scrape popular
applications

Identify
proprietary
encryption

Simulate user
behavior

Protocol
clustering

95.6% accuracy in identifying
proprietary encryption

94.7% accuracy in
clustering protocols

51

WireWatch results

12.9% of top 1k apps sent plaintext traffic.

3.5% of top 1k apps used proprietary cryptography.

52

WireWatch results

12.9% of top 1k apps sent plaintext traffic.

3.5% of top 1k apps used proprietary cryptography.

65.4% of top 1k apps sent plaintext traffic.

47.6% of top 1k used proprietary cryptography!

53

WireWatch results

 [1] Racing for TLS Certificate Validation: A Hijacker's
Guide to the Android TLS Galaxy

 Sajjad Pourali, Xiufen Yu, Lianying Zhao, Mohammad Mannan, Amr Youssef
Usenix Security 2024

Independently confirms
concurrent work! [1]

54

Research Questions

1. How common is proprietary encryption?
2. How secure are these protocols?

55

WireWatch results

● 177 protocol clusters
○ 94 used by only one application.
○ 83 were used across many different applications!

● Sorted by “popularity”, e.g. sum of downloads of all apps using each protocol
● Reverse-engineered top 18 protocols

○ Some protocols belonged to the same cryptosystem, so we grouped
them into “protocol families”

○ 9 protocol families in total

56

We manually analyzed the 9 most popular proprietary protocol families…

? contained severe vulnerabilities where we broke the encryption!

57

We manually analyzed the 9 most popular proprietary protocol families…

8 contained severe vulnerabilities where we broke the encryption!

58

We manually analyzed the 9 most popular proprietary protocol families…

8 contained severe vulnerabilities where we broke the encryption!

130 billion cumulative downloads of applications affected by the issues
we found.

59

WireWatch results

Protocol family # apps
Cumulative
downloads

Most
downloaded

MAU Decryptable Fixed?
Decrypted request

contents

Kuaishou SDK 76 35.10B Kuaishou 692 mill YES YES Device metadata

MobSDK 82 30.30B RedNote 312 mill YES YES Device metadata

Alibaba mPaaS 15 25.43B Taobao 921 mill YES No :(Browsing data

DNSPod 11 18.10B Pinduoduo 695 mill YES Wontfix DNS requests

WUP 7 17.62B QQ Browser 571 mill YES YES Browsing data

iQIYI 3 11.28B iQIYI 429 mill YES YES Network metadata

iShumei 37 10.34B RedNote 312 mill YES Mostly Security config*

MMTLS 1 9.23B WeChat 1.3 bill NO - -

Beizi SDK 38 9.02B Baidu Netdisk 107 mill YES No :(Device metadata

*contained vuln s.t. network attackers can read file contents on users phones

60

Leaked browsing data

500 million+ active users 400 million+ active users

Data leaked from insecure cryptography includes pages of visited URLs!
61

Case study: Alibaba mPaaS (UC browser, Taobao)

● Heavily obfuscated!
● libsgmain.so is secretly a JAR file???

62

Calls into libsgmain<version>.so

Case study: Alibaba mPaaS (UC browser, Taobao)
libsgmain<version>.so (main encryption library) is obfuscated :(

63

Case study: Alibaba mPaaS (UC browser, Taobao)
libsgmain<version>.so (main encryption library) is obfuscated :(

● String literals and constants were stored encrypted in the data section
○ had to dump .bss section at runtime

64

Case study: Alibaba mPaaS (UC browser, Taobao)
libsgmain<version>.so (main encryption library) is obfuscated :(

● String literals and constants were stored encrypted in the data section
○ had to dump .bss section at runtime

● Artificially introduces jumps to the result of a bunch of arithmetic, e.g. the first jump in
JNI_OnLoad:

mov w9,#0x2b ; w9 = 0x2b
str w9,[sp, #local_3c] ; store w9 at offset #local_3c on stack
adr x5, 0x128eec ; x5 = 0x128eec
ldrsw x27, [0x128f08] ; x27 = 0xFFFFFFFA (value at 0x128f08)
mvn x27, x27 ; x27 = bitwise NOT of x27 (= 0x5)
ldrsw x6, [x10]=>local_3c ; x6 = 0x2b (read from stack at #local_3c)
add x27, x27, x6 ; x27 = 0x5 + 0x2b = 0x30
add x5,x5,x27 ; x5 += x27
br x5 ; jump to address [0x128eec + ^0xFFFFFFFA + 0x2b]

○ Patched indirect branches with corresponding direct, PC-relative branches 65

Case study: Alibaba mPaaS (UC browser, Taobao)
Loads static encryption keys from a file called res/drawable/yw_1222.jpg

66

Case study: Alibaba mPaaS (UC browser, Taobao)
Loads static encryption keys from a file called res/drawable/yw_1222.jpg

67

● in the JPEG file contents, keys are stored encrypted with public data (the APK’s public RSA
signing key)

● googled “yw_1222.jpg” and found this public documentation:

Case study: WUP (QQ, Sogou browsers)

Found two critical vulnerabilities in this protocol.

1. A standard AES-CBC padding oracle. Can retrieve encrypted plaintexts.
2. Vulnerability in RSA construction. Can retrieve encryption key for

18.3% of keys.

Either method can retrieve the underlying encrypted data.

68

Case study: WUP (QQ, Sogou browsers)

Used RSA without OAEP padding to perform key exchange, e.g.:

C = RSA_encrypt(pubkey, m)

Where C is sent to servers, and m is used as an AES key for future encryption.

● If the server decrypted C, and m was over 2128, it would return a custom error:

error num:-3

● If the server decrypted C, and m was under 2128, and AES decryption with m failed, it gave a
different error:

error num:-2

69

Case study: WUP (QQ, Sogou browsers)

Recall that RSA is malleable under multiplication:

70

Case study: WUP (QQ, Sogou browsers)

This also applies to division (e.g. multiplying by the multiplicative inverse
under modulus N):

71

Case study: WUP (QQ, Sogou browsers)

This also applies to division (e.g. multiplying by the multiplicative inverse
under modulus N):

error num:-3

error num:-2

We have an oracle for whether the AES key m is divisible by any factor k!
72

Case study: WUP (QQ, Sogou browsers)

1. Use division oracle to identify all factors of m under 224 (~1 million queries)
a. Let F = product of all factors of m under 224

b. We need to find remaining factor product R such that m = F * R

2. Narrow search space for R:
a. Develop a similar oracle to tell whether kR >= 2128

b. Binary-search k such that: kR < 2128 and (k+1)R >= 2128 (max 128 queries)

3. With the bound [2128/(k+1), 2128/k] for R, can we brute-force it?

73

Case study: WUP (QQ, Sogou browsers)

● With the bound [2128/(k+1), 2128/k] for R, can
we brute-force it?
○ Yes!

● From running attack simulations for 100k
randomly chosen keys m, we are able to find
m for about 1 in 5 (~18.3%) keys!
○ E.g. the search space for R is under 248

(brute-forceable within a day) for 18.3%
of keys.

74

Case study: WUP (QQ, Sogou browsers)

● What kind of data is protected with this encryption protocol?
○ WUP is used by browsers.

■ The full URL of each page visited in the browser
■ Network metadata (WiFi access points, name of connected

network)
■ Device metadata (screen dimensions in pixels, OS data)

75

Overall…

● Basic, but critical, flaws, including:
○ Static key use with symmetric cryptography

■ Relying on code obfuscation to hide secrets
○ Key seeded from timestamp
○ Using RSA without OAEP
○ Susceptible to AES-CBC padding oracle
○ Not validating TLS certificates
○ Running untrusted code

● None of the schemes tried to provide cryptographic integrity or
authenticity, except for MMTLS

76

77

This is still a systemic problem

56.2% of top 1k apps sent plaintext traffic.

38.8% of top 1k used proprietary cryptography!

78

65.4% of top 1k apps sent plaintext traffic.

47.6% of top 1k used proprietary cryptography!(2024)

(2025)

79

1. WeChat

2. ~27 Chinese IMEs

3. 9 popular protocols
from ~2k top mobile apps

4. Hundreds more
protocols still in use..

Discussion

● Are these backdoors?

80

Discussion

● Are these backdoors?
○ No

81

Discussion

● Are these backdoors?
○ No

● No selective access
● Companies that did respond, pushed fixes very quickly
● CNCERT/CC is actively interested in improving transport security
● Data is already within China jurisdiction
● Similar vulnerabilities were actively exploited by Five Eyes to surveil Chinese

users abroad

82

Why is this happening?

● Many of these applications became massively popular around the
early 2010s– before TLS was de-facto standard
○ + Inertia

● Anti-scraping/competition (mistaking obfuscation for security)
● 996 → 007 working culture

● ??????

Why is this happening?

1. Find the problems
● Security researchers should pay more attention to these massively

popular but understudied apps
● Any researcher that looked at this traffic in Wireshark would know

there is a problem

How do we fix it?

2. Report the problems
● Many did switch to TLS when we reported severe vulns, some did not
● We need to better engage with these companies and put pressure on

them to design better software

How do we fix it?

3. Prevent future problems?
● Can platforms, app store enforcement, etc. impose restrictions on the

nature of app’s network access?
● “Don’t roll your own crypto” – how do we spread this message?

How do we fix it?

Acknowledgements!

Collaborators: Jeffrey Knockel, Zoë Reichert, Pellaeon Lin, Will Greenberg

Blog post review and disclosure coordination: Adam Senft, Ron Deibert

Reviewing cryptographic attacks: Keegan Ryan, Seth Schoen

Ph.D. advisors: Jonathan Mayer, Prateek Mittal

91

Learn more!

● WeChat MMTLS: https://citizenlab.ca/2024/10/should-we-chat (PETS 25)
● IMEs: https://citizenlab.ca/2024/04/vulnerabilities-across-keyboard (CCS 24)
● WireWatch: https://m0na.net/papers/wirewatch.pdf (S&P 25, blog post incoming)
● RedNote: https://citizenlab.ca/2025/02/network-security-issues-in-rednote/

○ RedNote used some of these protocols, and also retrieves videos/image over plaintext HTTP

Questions?
monaw@berkeley.edu

92

https://citizenlab.ca/2024/10/should-we-chat-too-security-analysis-of-wechats-mmtls-encryption-protocol/
https://citizenlab.ca/2024/04/vulnerabilities-across-keyboard
https://m0na.net/papers/wirewatch.pdf
https://citizenlab.ca/2025/02/network-security-issues-in-rednote/

