
WireWatch: Measuring the security of proprietary network encryption in the global
Android ecosystem

Mona Wang
Princeton University

Princeton, New Jersey, USA
monaw@princeton.edu

Jeffrey Knockel and Zoë Reichert
Citizen Lab, University of Toronto

Toronto, Ontario, Canada
{jeff,zoe.reichert}@citizenlab.ca

Prateek Mittal and Jonathan Mayer
Princeton University

Princeton, New Jersey, USA
{pmittal,jonathan.mayer}@princeton.edu

Abstract—We present WireWatch, a large-scale measurement
pipeline to evaluate the network security of Android apps.
WireWatch measures apps’ usage of plaintext network traf-
fic and non-standard, proprietary network cryptography. We
found that 47.6% of top Mi Store applications used propri-
etary network cryptography without any additional encryption,
compared to only 3.51% of top Google Play Store applications.
We analyzed the 18 most popular protocols from WireWatch,
which belonged to 9 protocol families, including cryptosystems
designed by Alibaba, iQIYI, Kuaishou, and Tencent. We found
that 8 of these protocol families sent requests that allowed
network eavesdroppers to decrypt underlying data, including
browsing data and device metadata, among various other
issues, such as being downgradable, not validating TLS certifi-
cates, and the use of RSA without OAEP. These vulnerabilities
affected 26.9% of our Mi Store dataset with a cumulative 130
billion downloads. Ultimately, WireWatch reveals that a large
portion of massively popular applications are using insecure
proprietary network protocols to encrypt sensitive user data.

1. Introduction

Network encryption on the web is nearly universal. As
of writing, over 80% of Firefox requests and over 90% of
Chrome requests are using TLS [1], [2]. Despite the ongoing
success of standardized, strong encryption on the web, the
same story is not yet true on mobile. Prior work studying
privacy and network security issues within the Google Play
ecosystem [3], [4] often overlooks large parts of the global
Android app market by ignoring Chinese app markets.

Researchers have previously studied non-TLS network
encryption used by popular Chinese mobile apps, but at
smaller scales. In particular, many massively popular apps
(e.g., WeChat [5]) use home-rolled proprietary network
cryptography over standard encryption schemes like TLS,
HTTPS, or QUIC. Such proprietary cryptographic protocols
often suffer from massive flaws such as being decryptable
by network attackers [4], [6], [7], [8]. These kinds of
vulnerabilities have historically been leveraged for mass
surveillance [9].

In this work, we show that these cases were the tip
of the iceberg, and the phenomenon of massively popular

applications using flawed proprietary network cryptography
protocols is much larger than the dozens of applications pre-
viously evaluated. To assess the scope of this phenomenon,
we designed WireWatch, a measurement pipeline to evaluate
the network security of mobile apps and to identify the
usage of non-standard cryptography. WireWatch automati-
cally scrapes application stores, installs and exercises their
UI, analyzes the resulting network requests for proprietary
encryption, and clusters requests containing proprietary en-
cryption. We ran 1,699 of the most popular mobile apps,
882 from the Google Play Store and 817 from the Mi Store,
through this pipeline.

WireWatch found that on the Xiaomi Mi Store, not
only were a majority of applications sending unencrypted
requests, but nearly half were using proprietary network
cryptography to encrypt requests. Although only 12.9%
of the applications from the Play Store sent unencrypted
requests, 65.4% of the applications from the Mi Store did.
Notably, 47.6% of the applications from the Mi Store were
utilizing proprietary network cryptography with no addi-
tional encryption, compared to 3.51% of the applications
on the Google Play Store. In some cases, the application
itself developed a custom protocol (such as WeChat [5])
for network transmissions. In other cases, various third-
party SDKs were responsible for the network transmissions
containing proprietary cryptography.

We analyzed the 18 most popular protocols from Wire-
Watch, which we determined as belonging to 9 cryptosys-
tems: Alibaba mPaaS, Beizi AdScope SDK, iQiyi, Mob-
SDK, Kuaishou Ad SDK, Shumei, Tencent DNSPod, Ten-
cent MMTLS, and Tencent WUP. Of these 9, 8 sent or
received some network communications that were decrypt-
able by network adversaries. Attacks included decrypting
symmetrically-encrypted payloads with publically inferrable
keys, MITMing TLS sessions, reading the contents of files
on a user’s phone, exploiting an AES-CBC padding oracle,
and inferring an AES key using a novel chosen-ciphertext
attack on a textbook RSA construction. The data sent or
received by these SDKs using custom cryptography included
user browsing data and network and device metadata. The
scope of these vulnerabilities alone is massive, affecting
26.9% of our Mi Store dataset with a cumulative 130 billion
downloads.

In summary, our contributions are as follows.

• We develop WireWatch, an open-source measure-
ment pipeline to identify the usage of non-standard
cryptography by mobile apps, and analyze 1.7k top
apps from Google Play Store and Xiaomi Mi Store.

• WireWatch finds that 47.6% of top Mi Store apps
use proprietary network cryptography, as compared
to 3.51% of top Google Play Store apps.

• We manually reverse-engineered the 9 most popu-
lar protocol families identified by WireWatch, and
found that 8 sent requests vulnerable to decryption.

Ultimately, we find that the continued usage of poorly
designed custom cryptography, as well as plaintext network
transmissions, is still a systemic issue across the most pop-
ular mobile apps in the world.

1.1. Ethical considerations and vulnerability disclo-
sure timelines

In this work, we provide detailed descriptions of cryp-
tosystems actively being used by hundreds of applications
that are themselves used by hundreds of millions of people,
possibly affecting over one billion users in total. For com-
pleteness and reproducibility, we provide code for retrieving
the underlying data or conducting other attacks against these
protocols. A summary of the issues we found, and the scope
of these issues, is available in Table 3.

We are aware of the risk of premature publication and
the potential ethical ramifications if these vulnerabilities are
not addressed quickly. We undertook extensive co-ordinated
vulnerability disclosures with the 7 vendors affected by
these issues. We sent disclosures to Alibaba, Beizi, iQIYI,
Kuaishou, and Shumei, MobTech, and Tencent between
November 12-26, 2024. The disclosures request companies
to fix the issues within 45 days. As of April 1st, 2025,
iQIYI, Kuaishou, MobTech, and Tencent have replied with
the intention to fix the above vulnerabilities, and to inform
downstream apps to update their SDK versions, but we have
not received any response from the other vendors. iQIYI,
Kuaishou, and MobTech have deployed fixes for these is-
sues which have reached downstream, updated versions of
applications.

2. Motivation and background

Modern mobile applications are expected to transmit
data securely with standard encryption like TLS. In 2018,
researchers found that of the top 200 applications in the
Google Play Store, only 3 transmitted sensitive data over
HTTP or improperly validated HTTPS [10]. However, this
work, and other studies of TLS usage in Android, have
largely focused on the Google Play Store context [3], [11],
[12], [13]. As the Google Play Store is not available in
China, such studies overlook a significant portion of the
global Android user base.

Recent global studies that do include apps from Chinese
markets have demonstrated remarkable differences in the

security of apps from the Google Play market and apps
from Chinese stores [14]. Li et al. found that apps developed
for the Chinese market tend to prefer proprietary protocols
for DNS resolution, ignoring the system DNS [15]. Pourali
and Yu et al. find that applications from Chinese app stores
fail to validate TLS certificates at a rate much higher than
applications on the Google Play Store [16].

Researchers have also started identifying the insecurity
of proprietary network protocols in popular Chinese mobile
applications. In a series of 2015–2016 reports, researchers
found that mobile browser applications popular in China
used broken proprietary network cryptography [6], [17],
[18], [19], [20]. In 2016, researchers manually reviewed
60 apps from a Chinese app store; however, since they use
port numbers to distinguish proprietary encryption, they only
find 6 cases of insecure proprietary encryption [7]. In 2024,
researchers discovered a similar set of issues affecting nearly
all software keyboards (Input Method Editors, or IMEs)
popular in China, allowing network eavesdroppers to decrypt
and obtain users’ keystrokes [8].

The trend of apps using proprietary cryptography is large
enough that it has been observed in adjacent privacy studies.
Pourali et al., while studying the usage of encryption to
obfuscate privacy analysis, discovered network vulnerabil-
ities in at least 24 applications using insecure proprietary
cryptography [4]. This work relied on hooking standard
JDK/Java cryptography libraries or non-obfuscated method
names, which may have incidentally missed uses of propri-
etary cryptography. Cryptography is often implemented in
NDKs for performance, and Chinese apps are more likely to
use obfuscation [21]. Like related work in automated privacy
measurement [22], this study also only reviewed Play Store
apps.

Given the growing evidence, we hypothesize that there
is a large class of massively popular, yet understudied mo-
bile apps that encrypt sensitive network data with insecure
proprietary cryptography. This work seeks to answer the fol-
lowing research questions for applications popular globally:

1) How common is proprietary network encryption?
2) How secure are these protocols?

Such use of insecure proprietary network encryption
may be unnoticed by the computer security community due
to the trend of excluding Chinese applications in global
security measurements. We developed WireWatch to char-
acterize the nature of proprietary encryption across popular
applications, and to provide researchers with tooling for
performing such security evaluations at scale.

2.1. Threat model

We are primarily concerned with the security of data
in transit. For instance, when evaluating messaging applica-
tions such as WeChat, Facebook Messenger, or Telegram,
we are not concerned with whether the underlying data
is accessible to the platform provider (e.g., via end-to-end
encryption). However, we are concerned whether third-party
network attackers can decrypt communications between the

Scrape app
stores
(§3.1)

App interaction
automation

(§3.2)APKs Network
captures

Network capture
analysis

(§3.3)

Protocol
clustering

(§3.4)Proprietary
protocol
traces

Analysis pipeline

Top
protocols

Reverse engineering
and protocol analysis

(§3.5)

Figure 1. Outline of WireWatch design, our automated analysis pipeline.

client and server. For instance, we are concerned with net-
work adversaries interested in leveraging vulnerabilities in
transport security to scale mass surveillance. One historical
example of such an attack is the Five Eyes’ XKEYSCORE
UCWeb plugin, which exploited weak network cryptography
in a Chinese application to ingest user data into a mass
surveillance database [9], [17].

Specifically, our threat model includes two types of
adversaries: a passive network eavesdropper and an active
network machine-in-the-middle (MITM). Most of the vul-
nerabilities we discovered simply require a passive network
eavesdropper to decrypt network data, but a few of them also
involve an active network MITM. We note that a passive
network eavesdropper on the victim’s local network can
obtain an active MITM position via ARP spoofing. In the
case of a passive network eavesdropper, the adversary’s
capability is simply observing network traffic going to or
sent from the user’s device. In the case of an active network
MITM, the adversary is in a network position such that
they can spoof, intercept, or alter network messages from
either the user device or the server. For instance, such
an attacker may be able to MITM a TLS session if the
end device is not validating the server’s certificate when
establishing TLS connections. In all cases, the adversary
can also obtain copies of the application to reverse engineer
or study themselves, but they do not have elevated privileges
or other access to the end device or servers.

3. Methodology and WireWatch design

In this section, we describe our methods and design
of WireWatch, which is summarized in Figure 1. We ran
WireWatch throughout the months of August and September
2024 and completed our protocol reverse engineering in
October and November 2024.

3.1. Application crawler

Our first goal for WireWatch was to construct a large
dataset of globally popular Android applications. In sum-
mary, we collected the most recent version of the most
downloaded applications from the Google Play Store, via
Androzoo [23]. Androzoo is a historical collection of al-
most 25 million Android applications that is popular among
researchers for mobile research [23]. The vast majority of
Androzoo applications (up to 22 million) are sourced from
the Google Play Store. We also sought application datasets
from a popular application store in China.

3.1.1. Scraping the Mi Store. Other researchers have de-
signed scrapers specifically for Huawei AppGallery and Mi
Store, the two most popular application stores in China.
Unfortunately, existing crawlers for Huawei either were
outdated and did not work with current APIs or did not work
to download applications popular domestically, i.e., within
China [14], [24], [25]. Existing Xiaomi crawlers exclusively
used website listings on mi.com. However, the web-based
application download links on the mi.com website have since
been taken down. We developed our own scraper by reverse
engineering an application store directly. As we had access
to a rooted Xiaomi Mi 3 device, we reverse engineered the
application discovery and application download APIs used
by Mi Store, and leveraged these internal APIs to design a
scraper for WireWatch. We hope to contribute this tooling
upstream to other work [23], [25].

3.2. App instrumentation and automation

Next, WireWatch automates interaction with each app
in order to generate network traffic. Our hardware setup for
WireWatch uses an unlocked, rooted Pixel 6 device running
Android 12, connected to the host device via USB. We note
that root was necessary for our later reverse-engineering,
but is actually not necessary for WireWatch. We also did
not implement root evasion. The device is also connected to
a Wi-Fi network that is bridged at the host such that the host
can collect network traffic logs from the device. As our host
is in a MITM position, it can also actively alter or inject
phone traffic, as in our experiments determining whether
clients were validating TLS certificates. The experiment
setup is also demonstrated in Figure 2.

For the automation of user interface (UI) interactions,
WireWatch’s goal is to exercise as many UI paths as pos-
sible, thereby generating diverse streams of network traffic
from testing differing code paths. WireWatch is driven by
Android’s UI Automator, a UI testing framework that pro-
vides an interface for receiving UI data from the device, as
well as sending UI events to the device. We tested Android’s
Application Exerciser Monkey API as well, but found that
we wanted to have more control over certain actions, such
as backing out of login pages. Built atop UI Automator,
WireWatch performs a breadth-first-search, exercising all
clickable elements and text fields in each separate view,
while preferring to accept consent dialogs and backing out
of login or registration pages when possible. The agent also
grants any permissions requested by the application. We run

our agent twice to capture differences when opened after in-
stall, closing and restarting the application between each run,
with time capped at 5 minutes per run. Finally, we reinstall
the application and run the agent once with a TLS certificate
MITM (presenting a self-signed certificate) configured at the
host using mitmproxy in transparent mode, routing all TCP
traffic from the device to mitmproxy. WireWatch uninstalls
each application after testing it.

3.3. Network capture analysis

From the network data collected in this process, we
can make various observations about the nature of network
requests made by mobile applications.

WireWatch first reconstructs TCP streams and filters
empty UDP/TCP/HTTP requests, which are commonly used
for network connectivity tests. For all plaintext HTTP and
other non-standard TCP or UDP traffic, we additionally an-
alyze the payload to flag whether it could contain encrypted
payloads, e.g., proprietary encryption.

3.3.1. Identification of proprietary protocols. In order to
identify potentially encrypted payloads, WireWatch first iso-
lates non-standard TCP or UDP traffic, as well as plaintext
HTTP traffic. Then, WireWatch tests if the packet payload
contains encoded (e.g., base64 or hexadecimal) or structured
(e.g., protobuf or JSON) data. If it is encoded, we decode the
structured data and recursively perform the same check. If
it is structured, we unpack the structure and then recursively
perform the same check for all values in the structure
(e.g., all values in a JSON/Protobuf list or dictionary). Our
base case is non-structured, non-encoded data, for which
we perform NIST’s statistical test suites for evaluating the
randomness of pseudorandom number generators [26]. Our
analysis flags any protocol containing sufficiently random
data and also reports whether the data is aligned to standard
DES or AES block sizes (8 or 16 bytes).

3.3.2. Finding the boundaries of pseudorandom data. If
the entire payload is sufficiently random, the boundaries of
random data are easy to determine. However, in many cases,
the proprietary wire formats we encountered had structured
header and footer data surrounding a ciphertext. As such,
even though it contained encrypted, pseudorandom data,
performing a statistical test on the entire payload led to false
negatives. WireWatch thus performs the following check
for non-structured data larger than 128 bytes to identify
boundaries of pseudorandom data within a payload.

We start searching from the end of the payload rather
than the start since structured footers are less common than
structured headers. First, WireWatch scans with a window
of 64 bits from the end of the payload, calculating the
randomness of each window. If we find 64 bits of data that
are sufficiently random, we fix the end of the range and
binary-search the start of the window range in blocks of 64
bits, such that the data in the range is above the statistical
threshold we set for randomness.

Android
phone

UI events

UI data

Network
requests

Network
requests

Host (network
bridge)

Figure 2. Our experiment setup. For our automation experiments, Wire-
Watch used a rooted Pixel 6 device running Android 12.

3.3.3. Proprietary protocol identification validation. To
validate WireWatch’s identification of proprietary protocols,
we constructed a ground-truth dataset from 100 randomly
selected apps. We were unable to scrape 5 (the APK down-
load consistently failed), and 3 did not successfully install on
our test device. For the remaining 92 applications, we manu-
ally interacted with the application, exhausting as many UI
paths as possible in order to generate network traffic. We
then comprehensively analyzed the resulting network traffic
using Wireshark, including identifying the usage of standard
encryption and manually looking through packet traces of
non-standard protocols to identify encrypted payloads. In
the cases where we identified proprietary encryption, we
also briefly reverse engineered the application to determine
whether it was indeed encrypted. We then compared our
results from the automated analysis.

3.4. Unsupervised clustering of protocols

WireWatch’s next goal is to determine common proto-
cols across our dataset, in order to prioritize them for reverse
engineering and analysis. WireWatch performs unsupervised
clustering of all network payloads flagged as containing
proprietary encryption.

3.4.1. Feature, hyperparameter, and clustering algo-
rithm selection. There is extensive prior work on fea-
ture selection, hyperparameter optimization, and selection
of clustering algorithms for the purpose of network traffic
classification [27], [28], [29].

For feature selection, we started with the 15 network
features as discussed in [28] and validated in [29]. As we
did not want to cluster based on the underlying transport
protocol (e.g., TCP vs. HTTP vs. UDP) and with more focus
on request contents and structure, we removed network layer
features such as port and IP number. WireWatch additionally
uses other structural features derived from the network
capture analysis (as described in Section 3.3), such as the
boundaries of the encrypted payload, the presence of various
encoding types in the payload (i.e., raw data, hexadecimal,
base64, JSON, or compression). If the encrypted payload
was contained in a named key (e.g., a JSON key-value store
or a URL query-parameter store), WireWatch includes this
named key in the features, one-hot encoded.

WireWatch uses k-means clustering due to its prior per-
formance on unsupervised clustering of network data [29].
WireWatch also performs a hyperparameter search in order

to identify the optimal number of clusters (between 50
and 300) to separate the data, by optimizing the clusters’
silhouette score.

3.4.2. Clustering validation. To evaluate WireWatch’s
clusters, we hold out 100 network requests from the set
and cluster them manually as a ground truth dataset. Then,
we use standard entropy metrics for cluster evaluation:
homogeneity, completeness, and the V-measure [30]. Homo-
geneity measures whether all points in each cluster are of the
same type, and completeness measures whether all messages
of a particular type are assigned to the same cluster. The V-
measure is the harmonic mean of the two.

3.5. Reverse engineering and protocol analysis

For the protocols determined by WireWatch, we cal-
culated the “impact” of each protocol as the cumulative
number of downloads of all applications that we observed
sending network requests using that protocol. We sorted the
protocol clusters by this value, and started analyzing them
from the top of the list. As we will describe in Section 3.5.1,
in some cases, protocols that appeared differently on the
wire actually belonged to the same family, e.g. using the
same software libraries or cryptographic primitives to en-
crypt payloads that were serialized differently on the wire.
We grouped such protocols together into the same protocol
families. In this way, we continued reverse engineering down
the list until we had fully analyzed 18 different protocols,
which we determined belonged to 9 different protocol fam-
ilies.

In order to reverse engineer each protocol, we used jadx
to analyze the decompiled Java code, and we used IDA Pro 9
and Ghidra to analyze disassembled native libraries, which
were commonly used for encryption. We also used Frida
to hook various function calls and analyze device memory
while the applications were running, as well as Wireshark
to capture and analyze network traffic.

Finally, we verified whether these vulnerabilities affected
other applications using the same protocol. For passive
attacks, we decrypted payloads from each network trace in
the cluster with the appropriate key. For active attacks, we
manually tested affected applications.

3.5.1. Defining a “network encryption protocol”. In this
work, we detect “proprietary protocols” based on structural
and statistical analyses of network payloads. However, as
these proprietary protocols are not standardized or well-
defined, the boundary of what is a distinct “network proto-
col” is ambiguous. For instance, on one hand, applications
can use similar wire formats to carry payloads that are
encrypted using different cryptosystems. On the other hand,
applications can also use different wire formats to carry
payloads that are encrypted using the same cryptosystem. In
all of these cases, the boundary defining a single “encryption
protocol” breaks down, and can only be distinguished or
clarified via static analysis and reverse engineering.

Without deeper visibility into the application, Wire-
Watch must use the wire format and other network fea-
tures as the distinguishing factor between “protocols”. In
our subsequent analysis of the top 18 protocols as deter-
mined by WireWatch, we corrected for such ambiguities
by identifying cases when popular protocols were using
the same cryptosystem. In these cases, we grouped them
together into “protocol families”. As an example, Alibaba
mPaaS provides a low-level cryptographic library for use by
applications. UC Browser, Taobao, and other applications
leveraged this library to design custom network encryption
protocols, though the underlying (insecure) key derivation
and encryption algorithms used were the same. Although
WireWatch reports these as being different protocols, since
they were using the same underlying cryptosystem, we
grouped these protocols together into the same Alibaba
mPaaS “protocol family”.

3.6. Limitations

Next, we discuss the limitations of WireWatch. First,
there will always be code paths that WireWatch will not
have traversed in the automation of these applications. This
is especially true since we did not register accounts or
create logins for these applications, due to the scale of our
study. In addition, as our device was rooted and we did
not implement root detection evasion, any application that
implemented root detection may have altered our results.
Thus, our results are biased towards false negatives and
represent a lower bound: some applications could indeed be
sending more requests containing proprietary encryption, or
with no encryption at all, that we did not identify or capture
in our analysis.

WireWatch separates app traffic by testing in sequence
and only having apps installed when tested. We did not
separate system traffic, as we did not identify proprietary
encryption or plaintext data sent by Android. However, if it
did, this could introduce false positives in our data.

To validate WireWatch, we built a “ground-truth” dataset
by analyzing 92 applications at random for the use of propri-
etary encryption, as well as holding out 100 network request
samples from clustering to create a “ground-truth“ clustered
dataset. We did not balance classes during validation. Due
to the number of apps and requests to analyze, we were
limited by the amount of time we could spend on manual
analysis to create these datasets. As such, this “ground-truth”
validation data may also suffer from human error. We note
that this analysis is separate from the more complete reverse-
engineering process (as described in Section 3.5) that we
perform to evaluate the information security of top protocols
determined by WireWatch.

In addition, the way we clustered requests and deter-
mined “popular protocols” is also subject to bias. For in-
stance, since we are clustering by network requests, protocol
families that send network requests more often and protocols
used by SDKs included in many applications will be over-
represented in the dataset.

App Store # apps
analyzed

Plaintext
traffic

Proprietary
crypto

TLS not
validated

Google Play 882 12.9% 3.5% 2.2%
Mi Store 817 65.4% 47.6% 49.1%

Total 1,699 38.1% 24.2% 24.1%

TABLE 1. SUMMARY OF RESULTS FROM OUR MEASUREMENT PIPELINE.

DLs # Mi Store
Apps

% using
Proprietary Crypto

≥ 1B 69 67.2%
≥ 500M, < 1B 44 59.1%

≥ 100M, < 500M 214 50.5%
≥ 50M, < 100M 218 44.5%

< 50M 272 40.81%

TABLE 2. ON THE MI STORE, PROPRIETARY CRYPTOGRAPHY IS MORE
COMMON IN MORE DOWNLOADED APPLICATIONS.

Finally, although we selected protocols based on impact,
there remain over 150 protocol clusters that we did not
analyze. We note that thoroughly reverse engineering these
protocols often takes a large amount of time and effort,
especially due to the obfuscation we encountered, and limits
the number of protocols we could feasibly reverse engineer.
In addition, our method of protocol selection (by cumulative
application download) biases towards proprietary encryption
that are used across many different applications, e.g., used
by popular SDKs. As such, there remain many proprietary
protocols that are utilized by applications with hundreds of
millions of users.

We note that despite these limitations, we found a signif-
icant number of vulnerabilities affecting hundreds of popular
apps. Our limitations are such that our findings represent a
lower bound of the usage of insecure proprietary encryption
in the global Android ecosystem.

4. Results

After selecting the top 1k downloaded applications from
both the Google Play Store and Mi Store, our pipeline
successfully ran on 1,699 of the applications, completing at
a rate of 85.0%. The 1,699 applications consisted of 882
apps from the Google Play Store and 817 from the Mi
Store. The applications which our pipeline failed to analyze
either failed to download via our scraping method or were
incompatible with our testing device. Table 1 presents a
summary of our results.

4.1. Validation of WireWatch

We performed two validation experiments with Wire-
Watch, as described in Section 3.3.3 and Section 3.4.2.
These experiments demonstrated that WireWatch performed
similarly compared to expert review.

4.1.1. Validating the identification of proprietary net-
work encryption in apps. The authors manually reviewed
92 applications in our dataset for the use of proprietary en-
cryption. WireWatch produced three false positives and one
false negative when identifying proprietary encryption, as
compared to our manual analysis. In the false negative case,
manually browsing the application elicited a network request
containing proprietary encryption, but our automated agent
did not induce similar network requests. In two false positive
cases, the application received pseudorandom data from the
server in a plaintext HTTP response, which was flagged
as proprietary encryption. However, this data was used as a
random seed and itself was not an encrypted payload. In the
remaining false positive, a long, randomly generated user ID
of 256 bits, encoded in base64, was flagged as proprietary
encryption. In total, our pipeline detected whether an appli-
cation is using proprietary encryption, compared to expert
review, with 95% accuracy.

4.1.2. Validating WireWatch’s unsupervised clustering.
The authors selected 100 network requests at random that
contained proprietary encryption, and clustered them man-
ually based on the wire format to produce a ground-truth
dataset. Compared to our ground-truth clusters, WireWatch’s
unsupervised clusters obtained a homogeneity score of
91.0%, a completeness score of 98.7%, with a combined
V-measure of 94.7%. Though WireWatch’s clustering was
slightly more complete than homogenous, it overall per-
formed well compared to expert review.

4.2. Overall transport security

First, we provide an overview of the use of plaintext
traffic and network security in general across the apps
surveyed by WireWatch. Plaintext traffic was significantly
more popular in Mi Store apps (65.4%) than in Google
Play Store apps (12.9%). In total, 38.1% of applications
sent plaintext traffic. This traffic included static resources,
such as images and JavaScript payloads loaded from CDN
endpoints, as well as sensitive device and network metadata.

In the Mi Store dataset, many applications sent plaintext
HTTP requests carrying DNS payloads. The popular Tencent
DNSPod protocol that we reverse engineered in Section 4.4
similarly carried DNS payloads, and thus is also a type
of proprietary DNS protocol. HTTPDNS, e.g., DNS via
HTTP as a transport, and other proprietary DNS protocols,
are notably popular in the Chinese application ecosystem,
possibly as an adaptation to widespread DNS hijacking.
These results are in line with Li et al.’s 2023 study of
proprietary DNS protocol usage in popular applications [15].

49.1% of Mi Store apps did not properly validate
TLS certificates, compared to only 2.12% of Google
Play Store applications. In other words, we were able to
successfully MITM a TLS connection with a self-signed
certificate, without modifying the device certificate chain,
in 24.10% of all apps that we analyzed. This independently
confirms concurrent work which found that 55.3% of apps

TABLE 3. SUMMARY OF THE TOP PROPRIETARY NETWORK PROTOCOL FAMILIES AFTER REVERSE-ENGINEERING EACH.

Protocol
family

#
apps

Cumulative
downloads

Most
downloaded MAU Method(s) of encryption Decryptable

request Contents Additional issues

Kuaishou 76 35.10B Kuaishou 692M AES-CBC+XOR mask YES Device metadata TLS MITM
MobSDK 82 30.30B Xiaohongshu 312M AES-ECB / RSA+AES-CBC YES Device metadata No OAEP padding
Alibaba 15 25.43B Taobao 921M AES-CBC YES Browsing data
DNSPod 11 18.10B Pinduoduo 695M DES-ECB YES DNS requests
WUP 7 17.62B QQ Browser 571M RSA+AES-CBC YES Browsing data Downgradable to no OAEP
iQIYI 3 11.28B iQIYI 429M DES-CBC YES Network metadata
Shumei 37 10.34B Xiaohongshu 312M DES-ECB / RSA+AES-CBC YES Configuration Remote file access†

MMTLS 1 9.23B WeChat 1.3B DH+AES-GCM NO -
Beizi 38 9.02B Baidu Netdisk 107M AES-CBC YES Device metadata
† By injecting data into the downloaded configuration, a network MITM can read the contents of files on the client’s device.

WUP

mPaaS

DNSPod

iQIYI

MobSDK

Shumei
Beizi

Kuaishou

Figure 3. Unsupervised clustering of network requests, plotted against t-
SNE feature embeddings and colored differently per cluster. We annotated
the most popular clusters of protocol families, summarized in Table 3.

from the Qihoo 360 store and 6.4% of apps from the Google
Play Store did not validate TLS certificates [16].

4.3. How common is proprietary network encryp-
tion?

After isolating all payloads containing “plaintext” traffic
(e.g., non-SSL/TLS TCP data and non-QUIC UDP data),
WireWatch analyzes them as described in Section 3.3 to
determine whether the application was potentially using
proprietary encryption.

47.6% of Mi Store apps sent requests containing pro-
prietary encryption, whereas only 3.51% of the Google
Play Store apps did. All except for 3 apps used HTTP
requests as transports for proprietary encryption, with ci-
phertexts either in the HTTP POST request body, or base64-
encoded and in the resource URL. In a handful of cases,
we observed requests carried over raw UDP or TCP as
transports. We suspect this is because middleboxes may be
more likely to interfere with or drop TCP or UDP packets
carrying non-standard payloads.

In the Mi Store, more popular apps tended to use
proprietary cryptography more often. As demonstrated
in Table 2, 67.2% of apps with over one billion downloads
were using proprietary encryption, whereas only 40.8% of
apps with under 50 million downloads were.

4.3.1. Protocol clusters. Finally WireWatch clustered the
requests into 177 unique “protocols”. 94 of these clusters
represented protocols only used by one application; this
indicated that the application developed their own, exclusive
protocols. In the remaining 83 clusters, the protocols were
being used by different applications. In many cases, the
endpoints that the applications used were often similar, if
not the same. Certain popular SDKs or libraries seem to be
developing their own protocols, cryptosystems, and families
of protocols in order to send and receive network requests.
We visualize the WireWatch clusters in Figure 3.

4.4. How secure are these protocols?

Finally, we want to characterize the security of these pro-
tocols. It was infeasible for us to reverse engineer hundreds
of applications, so we chose to work from the most popular
protocols identified by WireWatch. We reverse engineered
18 protocols in total, which we identified as belonging to 9
different protocol families. These reverse engineering results
are summarized in Table 3. This work presents thorough
reverse-engineering results for each of these protocols and
protocol family.

In the case of Kuaishou, MobSDK, Alibaba, and
Shumei, in the process of reverse engineering, we found
that they used multiple “protocols” that were driven by the
same cryptosystem. We call these “protocol families” as
per Section 3.5.1, and thus by fully evaluating one of the
protocols in a protocol family we were effectively evaluating
all apps, SDKs or cryptosystems using protocols from that
protocol family. In the case of attack development, we
tested our attacks against all apps sending requests from
those protocol families. For MobSDK and Shumei, this is
especially relevant because one of their protocols used RSA,
and the other did not.

8 of the 9 protocol families sent requests that were
decryptable by network adversaries. This is generally
marked by the use of a symmetric encryption algorithm,

such as AES, DES, and/or XOR masks, without any asym-
metric encryption for bootstrapping the keys. The keys are
hard-coded or otherwise generated by a deterministic func-
tion with a fixed or known seed across devices, and can be
discovered through reverse engineering. For Tencent WUP,
we were able to successfully decrypt the underlying data by
exploiting an AES-CBC padding oracle, and by exploiting
RSA oracles to learn information about the encryption key.

The protocols contained additional flaws that re-
vealed sensitive user data beyond being decryptable.
Kuaishou, for instance, had started to tunnel some of their
requests using proprietary encryption in HTTPS. However,
they failed to verify the TLS server certificate, which means
that the tunneled data (which was encrypted with a static
symmetric key) was still decryptable by an active network
MITM. In the case of Shumei, we also designed a proof-of-
concept attack such that a remote network MITM could read
the contents of files on the end user’s device. We describe
this attack in detail in Section 5.2.

3 of the 9 protocol families sent requests that were
encrypted with RSA-bootstrapped keys, 2 of which used
textbook RSA without OAEP padding. In this construc-
tion, the symmetric encryption key is randomly generated
per-request, then encrypted using an RSA public key pinned
in the application. Both the encrypted key and the cipher-
text are delivered to the server. MobSDK used a custom
serialization scheme without OAEP or other randomized
padding. Although WUP uses RSA encryption by default,
we were able to downgrade their encryption with an active
attack, inducing WUP to use textbook RSA (i.e. without
OAEP). RSA without OAEP is widely regarded as insecure,
as the determinism of the construction can enable padding
or decryption oracles [31], [32], as well as decreasing the
security of the construction overall [33]. In WUP’s case, we
were able to design a chosen ciphertext attack, leveraging
an RSA oracle thanks to the lack of padding, that retrieves
the underlying encryption key. Prior versions of WUP have
also been vulnerable to decryption, via yet another chosen
ciphertext attack due to their use of textbook RSA [20].

None of the protocols except for MMTLS contained
any checks for cryptographic authenticity or integrity.
Shumei makes an attempt, using an MD5 of the plaintext
and key for authentication; however, MD5 should not be
considered cryptographically strong authentication. The re-
mainder of the protocols except for MMTLS contained no
cryptographic authentication or integrity checks whatsoever,
meaning that ciphertexts were entirely malleable.

Even when using asymmetric encryption to bootstrap
key exchange, these protocols contained other crypto-
graphic flaws during key generation. Shumei’s 128-bit
AES key is generated with only around 76 bits of random-
ness, as they select 16 lowercase letters “a–z” at random.
In the case of MobSDK, some applications containing an
older version of the SDK used the system timestamp in
milliseconds to seed their key generation; in this case, we
were able to brute-force the correct AES key from the
approximate timestamp of the network request, even if they
used RSA-bootstrapped keys.

The contents of decrypted data included browsing
data, device metadata, and network metadata. Alibaba
mPaaS was used to encrypt browsing information (e.g.,
anything the user typed into a URL bar) as well as device
and network metadata. Sensitive device metadata includes
the device make and model, operating system, manufac-
turer, as well as memory size, storage size, screen size,
and network carrier, network information. From Kuaishou
SDK, we decrypted requests containing hundreds of settings
extracted from the device, as well as lists of every single
module loaded by the application, including the memory
locations at which each of these modules were loaded.
Generally, protocols encrypted similar data and metadata
across apps. However, one exception was Alibaba mPaaS, as
we found mPaaS was a low-level cryptography library used
by different applications for varying purposes, including, for
instance, by UC to encrypt browsing data.

5. Case studies

In this section, we describe three of the cryptosystems in
depth as case studies that exemplify the nature of proprietary
cryptography we analyzed, as well as the type of data en-
crypted within: Alibaba mPaaS, Shumei, and Tencent WUP.
At the end of this section, we include a short summary of
the remaining protocol families that we reverse engineered.

5.1. Alibaba mPaaS SDK

Alibaba’s mPaaS SDK was used as a lower-level cryp-
tographic library by many popular applications, many of
them owned by Alibaba, to encrypt data. At a high level,
this cryptosystem effectively encrypts payloads via AES-
CBC using a static key. The keys are stored in a local
image resource file: res/drawable/yw_1222.jpg. We
provide code for extracting the key database from any appli-
cation using this SDK, de-obfuscating libsgmain*.so,
and decrypting payloads that are encrypted in this manner.

The native library utilized heavy obfuscation, and the
static keys were additionally encrypted inside the image re-
source file using a fixed key derived from the DER encoding
of the app’s public APK RSA key. Further descriptions of
the exact decryption and obfuscation process can be found
in the Appendix.

5.1.1. Decrypted data payloads. In the case of
com.UCMobile, the database entry 3 with value
C7fU4ct8b4lbEo9BomWvWA76 was used to generate
keys for encrypting browsing data, or any information typed
into the URL bar. The following was encrypted and sent
to the domain sugs.m.sm.cn in the body of an HTTP
POST request. The following network transmission was
sent shortly after we had typed hellocanyoureadthis
in the URL search bar of the browser:

1 {'1': 'hellocanyoureadthis',
2 // [etc...]
3 '4': 2,
4 '5': 0,

GET /v3/cloudconf

Shumei
server

Android
app

(1)

(3)
 run regex

POST /v3/profile/android
regex result(4)

inject
regex (2)

Figure 4. Shumei remote file access attack. (1) The application fetches the
security configuration file. (2) As the response is insufficiently encrypted,
the attacker can decrypt it, inject regex commands, then re-encrypt the
file. (3) The app runs the regex. (4) The result of the regex is encrypted
using a slightly more secure encryption algorithm, then sent to Shumei. By
designing the injected regex carefully, we can use the size of the encrypted
ciphertext in (4) as a side-channel to determine the contents of a particular
file on the user’s device.

5 '6': '搜索大全0216_https1',
6 '7': 158,
7 '8': 1}

We were additionally able to decrypt device meta-
data contained in the bodies of HTTP POST requests to
amdc.m.taobao.com and cdn.ynuf.aliapp.org
using the same methods. These included the device model,
operating system, manufacturer, a unique device identifier,
network information, as well as placeholders for GPS coor-
dinates and the Wifi BSSID.

5.2. Shumei

Shumei uses broken cryptography to retrieve a certain
configuration file containing a series of regex instructions.
Network attackers can thus inject arbitrary regex commands
into this configuration file downloaded by the application.
The result of these regex commands is then transmitted
via improved encryption. While the results of the regex
commands is not directly readable, the number of matches
can be inferred by the size of the encrypted payload.

We develop a PoC where a network attacker extracts
content from a file readable by the application. Shumei
runs regex-matching for arbitrary attacker-provided regex
patterns on any readable filepath, and the number of matched
patterns is leaked in the attacker-readable payload size. To
leak file content, our PoC injects custom regex patterns such
that file content is encoded into the number of matches.

5.2.1. Proprietary encryption. We identified two pro-
prietary protocols used by Shumei’s cryptosystem. We
found that base64-encoded payloads contained in network
requests received from fp-it.fengkongcloud/v3/
cloudconf were encrypted using DES-ECB.

Second, we found that network requests sent to fp-it.
fengkongcloud/v3/profile/android were en-
crypted using RSA-bootstrapped AES-CBC from the same
cryptographic libraries.

5.2.2. Remote file access attack. We found that by in-
jecting data into the DES-encrypted configuration file, an

attacker can cause the client to perform various searches on
their filesystem (see Figure 4 for an illustration). The results
of these searches are then encrypted via RSA+AES and sent
to v3/profile/android. Although this payload cannot
be trivially decrypted, we can design the injection such that
the size of the resulting payload acts as a side-channel.
In this way, a network attacker can remotely identify the
presence of any file that the application has permissions to
read.

Specifically, the DES-encrypted configuration file
fetched by Shumei contains a field “risk files”. The contents
of this fieldis doubly encrypted via AES-CBC with a hard-
coded key and IV.

The “risk files” field contains a list of objects such as
below:

1 {"path": "file:///system/lib/libriru_edxp.so",
2 "type": "file", // or "dir"
3 "key": "mgsk7",
4 "option": "exists" // or "match", "regex"}

This configuration is directing the client to perform various
checks for files on the device; for instance, the check above
is likely searching for the presence of Magisk, a common
tool for rooting Android devices. The results of these checks
are then encrypted and sent to v3/profile/android.
One consequence of this, is that a network attacker can
induce false positives or false negatives for various checks.

We found that we could infer the number of “regex”
matches from the size of the resulting payload sent to
v3/profile/android if there are matches, as the SDK
includes all results from the regex search in the payload
sent to v3/profile/android. Leveraging this vector,
we can successfully DOS the client by injecting a resource-
intensive regex. Of even more concern, is that an attacker
can use this vector to identify the presence of files that the
application has permission to read and also exfiltrate values
inside of those files.

We designed a proof-of-concept attack to allow a net-
work eavesdropper to read the BogoMIPS value from
/proc/cpuinfo on the victim’s device. Although we
cannot read the client’s encrypted transmissions to the
endpoint v3/profile/android, the attack works by
leaking the BogoMIPS value in the length of the payload.
Effectively, the payload’s length is proportional to the mag-
nitude of the BogoMIPS value. We were able to exfiltrate the
BogoMIPS value to the nearest whole BogoMIP, supporting
any value from a range of 1 to 65536. Testing on two
Android devices, the payload lengths varied between 3.3
and 3.4MB. This attack can be generalized for any content
in file accessible by any application using Shumei.

5.3. Tencent WUP

Tencent WUP is a cryptosystem developed by Tencent,
used in QQ Browser, Sogou Browser, and other applications.
WUP uses two possible cryptosystems, mode 12 and mode
17, indicatedin the URL query parameters to WUP servers.
Mode 12 uses RSA with no OAEP, and AES-ECB encryp-
tion with PKCS7 padding, whereas mode 17 uses RSA with

OAEP, and AES-CBC encryption with PKCS7 padding. By
default, apps use mode 17. In both modes, WUP works as
follows. The HTTP POST query parameter qbkey is the
hex-encoded RSA encryption of some randomly generated
128-bit secret. This secret is then used to encrypt a payload
via AES, which is serialized in the HTTP POST body.

We developed two chosen ciphertext attacks on Tencent
WUP, where a network attacker can obtain the plaintext.

5.3.1. Decryption through a CBC padding oracle. For
this attack, the network attacker does not need a MITM
position against the victim, but does need to send queries to
WUP servers. Using this technique, the attacker can decrypt
any past payload that was encrypted with WUP mode 17.

When using mode 17, WUP servers return a unique error
number, -89, when the padding of the decrypted plaintext is
incorrect. The WUP servers return a different error number,
-2, if the plaintext padding is correct but the remaining
plaintext is not interpretable by their servers. Using this
padding oracle, we were able to successfully and consis-
tently decrypt payloads sent by WUP using the standard
CBC attack construction with minimal modifications [34].

5.3.2. Retrieving the AES key from an RSA oracle. For
this attack, the network attacker does need an active MITM
position against the victim to downgrade WUP mode 17 to
WUP mode 12. To query the RSA oracle, the attacker must
also send queries to WUP servers. However, this vulnera-
bility also enables attackers to decrypt any past payloads
encrypted with WUP mode 12.

Ultimately, this attack leverages the malleability of RSA
without padding to learn information about the encrypted
AES key. Using this attack, we can recover 18.3% of AES
keys.

1. Downgrading to RSA without OAEP. We found that
we could downgrade clients using the WUP cryptosystem
to remove OAEP during RSA encryption, from mode 17 to
mode 12. An active MITM attacker can alter the response
to WUP requests to report HTTP code 702. Receiving a
702 error causes the client to downgrade to mode 12, thus
removing OAEP padding for future requests. After conduct-
ing the initial downgrade attack, the client will continue to
use RSA without OAEP for the subsequent 24 hours. For
the remainder of the attack, the attacker no longer needs
to maintain their MITM network position, and can simply
eavesdrop and collect client messages that are encrypted
using this cryptosystem.

2. Developing RSA oracles. WUP servers return a
unique error, -3, if the decrypted RSA payload is greater
than 2128, likely as a stop-gap measure to prevent a previous
vulnerability [20]. Leveraging this, and leveraging the fact
that RSA is homomorphic under modular multiplication, we
can construct multiple oracles to learn information about the
underlying AES key.

Multiplication oracle: For any integer k, by calculating
kec (mod N) and sending this to the WUP servers as
qbkey, the response will tell us whether km ≥ 2128.

Division oracle: For any integer k, k−ec (mod N) and
sending this to the WUP servers as qbkey, the response
will tell us whether m = 0 (mod k), i.e., whether m is
evenly divisible by some integer k.

3. Factoring the AES key.
With the division oracle, we can determine all prime

factors of the AES key m under some reasonable bound B.
Let F be the product of all prime factors of m underneath
B, and let R be the product of all prime factors of m above
B. Thus, m = FR. As there are approximately B ln(B)
primes under B, we can determine F in around B ln(B)
division oracle queries.

After determining F , we can further narrow down the
search space for the remaining R as follows. As our mul-
tiplication oracle can report whether some multiplication of
kR ≥ 2128 , we can binary-search k such that (k + 1)R ≥
2128 and kR < 2128. This will take at most 128 oracle
queries and bound our search space for R:

LR =
2128

k + 1
≤ R <

2128

k
= UR

Finally, we brute-force the remaining possibilities for R.
As a realistic benchmark for brute-forcing capabilities, our
lab machine can perform approximately 250 AES calcula-
tions in a day. Assuming an attacker would commit similar
computational resources for a day, we model the probability
of success in finding the key as P (UR − LR < 250) =

P (⌈ 2128

R ⌉ − ⌊ 2128

R ⌋ < 250).
We ran 100k simulations, each time choosing a new m

in [0, 2128) and factoring it, to estimate our probability of
success for varying values of B. If we are willing to perform
up to one million requests per-key (B ≈ 224), similar
to Bleichenbacher’s million-message RSA attack [32], the
probability of success is 18.3%. We implemented a proof-of-
concept attack and successfully obtained an AES key using
this method. After factoring the key and determining F , the
space of the remaining bound for R was approximately 243,
which we were able to brute-force using our machine within
30 minutes. We then successfully decrypted all network
requests that were encrypted using this key.

5.3.3. Decrypted data. The decrypted data includes de-
tailed device metadata and user browsing reports, including
URLs of pages visited in QQ and Sogou Browser.

5.4. Remaining case studies

MobSDK. Some requests made by MobSDK used RSA-
bootstrapped AES. Specifically, they use a pinned RSA
public key to encrypt a randomly-generated AES key. That
key is then used to encrypt the payload via AES-ECB
with PKCS7 padding. The resultant ciphertext is transmitted
alongside the RSA-encrypted key. However, MobSDK does
not use OAEP padding in their encryption of the AES key,
serializing it as the length of the key in four bytes, big-
endian, followed by the key itself. This serialized data is
then interpreted as a BigInteger for the RSA computation.

Within this protocol family, some POST requests
were encrypted differently. This data was encrypted,
also using AES-ECB, but this with the fixed key
b'sdk.commonap.sdk'. These easily decryptable re-
quests contained device metadata such as the device model,
remaining storage on the device, device manufacturer, net-
work carrier, screen size, as well as device memory size.

DNSPod. Payloads in the URL parameters of an HTTP
GET request, as well as the response body, were encrypted
using DES-ECB with PKCS7 padding. Keys were fixed
per-app. In this case, payloads carried DNS requests and
responses. We note that our device’s operating system was
configured to always use a DNS-over-HTTPS resolver.

Kuaishou SDK. HTTP POST requests to
gdfp.gifshow.com contained encrypted data in
the body. The data is encrypted first with a XOR-mask-like
algorithm, and encrypted again using AES, both using the
same fixed key. Pseudocode is provided in the Appendix.
Although some of these POST requests used TLS, the
client did not validate the server certificate, so we were
able to decrypt the underlying data with a standard
TLS MITM. The decrypted data contained hundreds of
system settings extracted from the user’s phone, as well
as every .so module loaded by the application, and the
memory addresses at which they were loaded. Payloads
also contained device make, manufacturer, and network
metadata.

iQIYI. iQIYI and related video apps sent HTTP POST
requests to qy.qchannel03.cn, encrypting data via
DES-CBC with PKCS7 padding. In this case, the key is de-
rived from the first eight ASCII bytes of the MD5 lowercase
hex digest of an ASCII-encoded timestamp. This timestamp,
“s1”, is transmitted alongside the payload in the clear. These
requests contained the device manufacturer, network data,
the device platform, as well as unique user IDs.

Beizi. HTTP POST requests to sdk.beizi.biz
contain base64-encoded payloads of encrypted data in
the POST request body. This data is first gzip-
compressed, then encrypted using AES-CBC with PKCS5
padding, with the key b'8iuaKct.PMN38!!1' and
IV b'abcdefghijk1mnop'. These requests contained
metadata (such as the originating app, and its date of
install, and version), device information (such as the OS,
manufacturer, screen resolution), and additionally contained
placeholders for advertising IDs and tracking information.

6. Discussion and recommendations

With the aid of WireWatch, we have demonstrated that
(1) proprietary protocols are popular, especially in applica-
tions intended for the Chinese market, and that (2) these
proprietary protocols often contain severe vulnerabilities.

On one hand, security research communities across the
globe seem to understand the risk of “rolling your own
cryptography”. On the other hand, our analysis demonstrates
that insecure proprietary network protocols continue to be
massively popular. So how do we get to “TLS everywhere”
in practice?

Figure 5. An example of the security disclosures on the Google Play Store.

Systemic issues require systemic solutions. We demon-
strated that the use of plaintext traffic and insecure pro-
prietary encryption is an ecosystem issue across a large
portion of popular Android apps. Although we thoroughly
analyzed and reverse engineered the most popular propri-
etary protocols, there remain over 150 protocols which
we did not analyze. Thoroughly reverse engineering these
protocols takes a large amount of time and effort, espe-
cially when obfuscated. As such, although WireWatch can
give us a high-level overview of network security issues
in the Android ecosystem, the widespread popularity of
(often insecure) proprietary encryption protocols presents
a significant challenge. Manually reverse engineering and
reporting issues for each individual protocol limits the scale
of network security vulnerabilities we can fix. Instead, the
ecosystem needs systemic fixes.

In the remainder of this section, we present broader
recommendations for stakeholders in the Android applica-
tion ecosystem. The goal of such recommendations is to
systemically address applications transmitting sensitive data
that is not sufficiently encrypted.

6.1. Application stores

The Google Play Store provides “Security Practices”
information for popular applications that declare whether or
not data is encrypted in transit. This information is provided
by the application developers, and is manually reviewed
by the application store. Examples of these informational
modals are shown in Figure 5. In Google Play’s documen-
tation, this is a disclosure that “all of the user data collected
by your app is encrypted in transit”.

64.5% of the Google Play applications that sent or
received at least one plaintext request had incorrect in-
formational modals claiming that “Data is encrypted in
transit”. The remainder had the “Data isn’t encrypted” in
their “Security Practices” information box, as expected. We
note that, although applications are reviewed manually when
initially submitting their Data Safety practices, application
developers are expected to update their data safety infor-
mation, as subsequent updates to the application are not
manually reviewed [35]. App developers might accidentally
introduce security regressions in future updates, such as by
fetching a plaintext resource or including an SDK that makes
plaintext requests.

We suggest that application stores periodically review
particularly popular applications for continued compliance
with their stated Data Safety practices. One could also
leverage WireWatch for this purpose, to identify the use of

proprietary cryptography or plaintext network transmissions
by applications at scale. Such reviews could be further-
expedited or automated if the applications declare strict
encryption settings and are not found to be using low-level
network APIs. The existence of an UNSAFE INTERNET
permission, as discussed in the following Section 6.2, could
further expedite such reviews.

We suggest that other application stores also implement
network encryption disclosures in their data safety and
privacy policy transparency programs. Manual review and
application store disclosures are not foolproof, as a re-
viewer with limited time and resources cannot possibly fully
guarantee the network security of an application. However,
if a developer is found to be making false claims about
aspects of their application, as with privacy policies, there
may be modes of enforcement, via takedowns from the
application stores, or via fines from local regulatory bodies.
Popular Chinese app stores already claim to manually re-
view uploaded applications for various security and privacy
risks [14]. However, to our knowledge, no Chinese app store
requires an “encrypted-in-transit” security disclosure by the
developer similar to the Google Play Store’s data safety
transparency program [14].

6.2. Operating systems developers

Both Android and iOS have network security features
designed to prevent the transmission of insecure network
data. Specifically, Apple’s App Transport Security and An-
droid’s usesCleartextTraffic manifest option pre-
vent higher-level networking APIs from sending network
requests that are not encrypted with TLS [36], [37].

However, there are limitations to these features. First,
not all libraries respect and enforce Android’s Network
Security Configuration (NSC); in fact, developers often
downgrade NSC protections [38]. Finally, neither feature
prevents apps from using lower-level socket APIs in order
to send insecure traffic. Many of the protocols we studied
use these lower-level APIs, as were other vulnerable pro-
prietary protocols studied by researchers in the past [8].
These same researchers proposed the addition of an UN-
SAFE INTERNET attribute, which would be required for
applications in order to use lower-level socket APIs that
do not use TLS. They also note the potential drawbacks
of such a permission. For instance, in the case where the
operating system is compromised or no longer receiving
updates, but the application is up-to-date, the application
may prefer to use their own implementation of TLS. In
this case, the application would still have to declare the
UNSAFE INTERNET permission, even if their network
transmissions are being encrypted properly.

Given the scope of the issue at hand, we still advocate for
such a permission and highlighting the usage of lower-level
socket APIs. At the very least, we implore operating system
developers to explore such an option that might surface
whether an application is using lower-level, unencrypted
socket APIs.

6.3. Developers using third-party SDKs or libraries

When including third-party SDKs or libraries to use
in their applications, developers should verify or otherwise
audit the security of such SDKs or libraries. Certain red flags
can be apparent when setting up or configuring these SDKs.
For instance, if the SDK setup requires the application to
use a plaintext (HTTP) endpoint or requires the developer
to generate a symmetric key in order to function, it may
indicate that the SDK is transmitting data either in plaintext
or using proprietary, non-standard encryption.

Similar red flags were present in the SDK documentation
for the protocols where we discovered critical vulnerabil-
ities. The Shumei SDK setup configuration asked devel-
opers to explicitly enable the usesCleartextTraffic
attribute in their manifest file [39] and add exceptions to
their Network Security Profile, which indicates the intent to
either send data in plaintext or to use HTTP as a transport for
proprietary encryption. Neither case is desirable and applica-
tion developers should prefer to use standard encryption. In
another example, both the Alibaba mPaaS SDK and Tencent
DNSPod documentation mention needing to generate and
configure a secret key for decryption and encryption, without
any mention of TLS or CA certificates [40], [41].

If the third-party API endpoints are configurable, de-
velopers should always prefer to use API endpoints that
use HTTPS, TLS, or QUIC over unencrypted endpoints or
endpoints that use custom cryptography.

Android app developers can also strengthen
their application network security by setting
usesCleartextTraffic to false in their manifest
file [36] and declaring a strict Network Security Policy [42].
Though this is not foolproof, as discussed in Section 6.2,
this can prevent the transmission of cleartext using higher-
level networking APIs. Apple’s App Transport Security
feature does the same for iOS apps [37].

6.4. SDK and application developers

SDK and app developers should use well-studied en-
cryption protocols, such as HTTPS or QUIC, and avoid
rolling their own cryptography. Although TLS has had its
fair share of vulnerabilities over the past several decades,
as it is now the de-facto standard for network encryption,
it benefits from the most academic and public scrutiny
compared to any other transport security protocol. Cryp-
tography is notoriously difficult to design and implement
correctly, and it is common wisdom that using more popular,
higher-level APIs for encryption is less susceptible to critical
vulnerabilities [43].

Developers should also validate TLS certificates. Any
mobile application transmitting traffic over TLS/QUIC
should pin the expected server certificate when possible, or
otherwise validate the server certificate against a standard
certificate trust store. In general, developers should follow
best practices for transmitting network traffic securely.

6.5. Security researchers

This work and others have noted differences between
security practices in the Google Play ecosystem vs. the
Chinese application ecosystem [15], [16]. Although we ad-
dressed many possible avenues for remediation to close
this gap, we cannot address the root of the problem if
we do not know why security practices differ between the
two contexts. These are important questions that could be
answered by future human-centered research in the Chinese
security ecosystem.

More scrutiny needs to be paid to the Chinese mobile
app ecosystem in general. Though many more privacy and
security researchers have been including datasets of Chinese
apps in their studies, this should be the expectation, rather
than the exception, for global app studies. One barrier to
wider adoption is that there is not currently a stable set of
methods for retrieving apps from Chinese stores. For all of
the prior works we tried to build on, datasets were either
not available or the techniques used to scrape the apps were
outdated due to updates by the app store. Removing the
barrier of having to reconstruct app datasets would increase
the amount of work that studies Chinese apps in addition to
Google Play Store apps.

Finally, the mobile application ecosystem at large would
benefit from longitudinal telemetry. Most longitudinal mea-
surement studies of TLS/HTTPS study encryption on the
web, but to our knowledge there is no such ongoing study
for mobile encryption. Prior works studying mobile privacy
and security at a large scale have only been run as one-off
studies. While we plan on continually running WireWatch
in the future to collect longitudinal data, other studies could
benefit from such measurements to identify how certain pri-
vacy and security properties trend over time and in response
to interventions such as additional app store review.

7. Related work

In this section, we present related network security
measurements, existing security measurements of the An-
droid mobile application ecosystem, Android UI fuzzing,
and finally, identifying and evaluating proprietary network
cryptography. Our work built on methods from all these
fields in the design of WireWatch.

Vulnerabilities in transport security are especially con-
cerning since they enable third-party network attackers to
compromise user privacy at scale, e.g., by enabling mass or
targeted surveillance. There is a significant body of literature
aimed towards measuring both the usage of standard security
protocols, as well as evaluating the security of popular
protocols and encryption algorithms. Researchers have his-
torically studied vulnerabilities in SSL or TLS, the most
widely used transport security protocol [44], [45]. Along
this same line of research, in 2018 Böck et al. measured
the practical mass-exploitability of Bleichenbacher oracles
in popular SSL/TLS ciphersuites [32], [46].

Due to the universal popularity of Android devices,
researchers have also devoted large efforts towards measur-

ing the security of the Android ecosystem, either through
application instrumentation or static analyses of APKs. Re-
searchers have measured cryptographic flaws across the
Google Play ecosystem [47] and studied the misuse of low-
level cryptographic APIs [48]. In the case of TLS/SSL,
researchers have also measured multiple pitfalls in how
mobile application developers interact with its higher level
APIs in practice [11], [12], [13].

WireWatch uses automated UI fuzzing methods, which
is another field with extensive literature [49], [50], [51],
[52]. These tools expansively explore all possible states of
an application in order to discover bugs during development.
The state-of-the-art in this field is leveraging LLM technol-
ogy to direct GUI testing and mobile task automation [53],
[54]. As such, although these systems are very complete, all
prior work presents results from fuzzing under 100 applica-
tions, as the method often depends on some seeded manual
interaction with the application [50], [52] or the method
takes significant time and resources to fully automate each
application [51], [53]. Since our goal is to scale this pipeline
for testing upwards of a thousand applications, we used
lighter-weight solutions that may not be as comprehensive,
but succeed in generating large amounts of network traffic,
similar to related pipelines designed to exercise apps in order
to evaluate their privacy practices [4], [22].

Others have proposed automated reverse engineering
and detection of proprietary network protocols in different
contexts. In 2021, Ye et al. proposed probabilistic meth-
ods for reverse engineering proprietary network protocols
used by IoT devices [55]. Researchers have also worked
towards identifying encrypted network traces in the context
of malware fingerprinting and identification, as malware
command-and-control network requests often use propri-
etary encryption to avoid detection by automated intrusion
detection systems [56].

8. Conclusion

Recent research has been discovering flaws in propri-
etary encryption used by massively popular applications, but
with WireWatch, we were able to uncover the true scope
of this ecosystem issue. After analyzing the most popular
18 protocols discovered in 1.7k top apps, we found that
not only did most of them contain critical vulnerabilities
which allowed network eavesdroppers to decrypt the under-
lying data, but that even the implementations of asymmetric
cryptography contained basic flaws in their construction.

Despite the growing trend towards TLS everywhere, our
analysis, aided by WireWatch, finds that a vast number
of popular applications developed by large, well-resourced
companies continue to rely on insecure cryptography to
transmit sensitive user data. We hope the analysis in this
work provides evidence and motivation for a stronger push
to fully and securely encrypt the Internet.

Acknowledgments

The authors would like to thank Keegan Ryan and Seth
Schoen for their review of the cryptographic attacks in this
work. The authors would also like to thank Ron Deibert
and Adam Senft for their review and guidance around co-
ordinating vulnerability disclosures.

References

[1] Let’s Encrypt, “Let’s Encrypt stats,” https://letsencrypt.org/stats, [On-
line; accessed 2024-11-10].

[2] Google Transparency Report, “HTTPS encryption on the web,” https:
//transparencyreport.google.com/https/overview, [Online; accessed
2024-11-10].

[3] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan,
J. Amann, and P. Gill, “Studying TLS usage in Android apps,”
in Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p.
350–362.

[4] S. Pourali, N. Samarasinghe, and M. Mannan, “Hidden in plain sight:
Exploring encrypted channels in Android apps,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 2445–2458.

[5] M. Wang, P. Lin, and J. Knockel, “Should we chat, too? Security
analysis of WeChat’s MMTLS encryption protocol,” The Citizen Lab,
Tech. Rep., Oct. 2024.

[6] J. Knockel, A. Senft, and R. Deibert, “Privacy and security issues in
BAT web browsers,” in 6th USENIX Workshop on Free and Open
Communications on the Internet (FOCI 16). Austin, TX: USENIX
Association, Aug. 2016.

[7] Y. Zhang, J. Shu, J. Li, Q. Wang, and D. Gu, “An empirical study of
insecure communication in Android apps,” in International Confer-
ence on Wireless Communication and Network Engineering (WCNE
2016). DEStech Transactions on Computer Science and Engineering,
11 2016.

[8] J. Knockel, M. Wang, and Z. Reichert, “The not-so-silent type:
Vulnerabilities across keyboard apps reveal keystrokes to network
eavesdroppers,” The Citizen Lab, Tech. Rep., Apr. 2024.

[9] Network Tradecraft Advancement Team (Five Eyes), “Syn-
ergising network analysis tradecraft,” May 2012. [Online].
Available: https://www.eff.org/document/20150521-cbc-synergising-
network-analysis-tradecraft

[10] D. Shin and J. Sun, “An empirical study of SSL usage in Android
apps,” in 2018 International Carnahan Conference on Security Tech-
nology (ICCST), Oct. 2018, pp. 1–5.

[11] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben,
and M. Smith, “Why Eve and Mallory love Android: An analysis
of Android SSL (in)security,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS
’12. New York, NY, USA: Association for Computing Machinery,
2012, p. 50–61.

[12] L. Onwuzurike and E. De Cristofaro, “Danger is my middle name:
Experimenting with SSL vulnerabilities in Android apps,” in Pro-
ceedings of the 8th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, ser. WiSec ’15. New York, NY,
USA: Association for Computing Machinery, 2015.

[13] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl, “To
pin or not to pin: helping app developers bullet proof their TLS
connections,” in 24th USENIX Security Symposium (USENIX Security
15). Washington, D.C.: USENIX Association, Aug. 2015, pp. 239–
254.

[14] H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li,
J. Tapiador, J. Cao, and G. Xu, “Beyond Google Play: A large-scale
comparative study of Chinese Android app markets,” in Proceedings
of the Internet Measurement Conference 2018, ser. IMC ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
293–307.

[15] B. Li, Y. Zhu, Q. Liu, Y. Sun, Y. Zhang, and L. Guo, “Wrapping DNS
into HTTP(S): An empirical study on name resolution in mobile ap-
plications,” in 2023 IFIP Networking Conference (IFIP Networking),
2023, pp. 1–9.

[16] S. Pourali, X. Yu, L. Zhao, M. Mannan, and A. Youssef, “Racing
for TLS certificate validation: A hijacker’s guide to the Android TLS
galaxy,” in 33rd USENIX Security Symposium (USENIX Security 24).
Philadelphia, PA: USENIX Association, Aug. 2024, pp. 683–700.

[17] J. Dalek, K. Kleemola, A. Senft, C. Parsons, A. Hilts, S. McKune,
J. Q. Ng, M. Crete-Nishihata, J. Scott-Railton, and R. Deibert, “A
chatty squirrel: Privacy and security issues with UC browser,” The
Citizen Lab, Tech. Rep., May 2015.

[18] J. Knockel, A. Senft, and R. Deibert, “WUP! there it is: Privacy and
security issues in QQ Browser,” The Citizen Lab, Tech. Rep., Mar.
2016.

[19] ——, “A tough nut to crack: A further look at privacy and security
issues in UC browser,” The Citizen Lab, Tech. Rep., Aug. 2016.

[20] J. Knockel, T. Ristenpart, and J. R. Crandall, “When textbook RSA is
used to protect the privacy of hundreds of millions of users,” arXiv,
2018.

[21] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen,
X. Wang, and K. Zhang, “Understanding Android obfuscation tech-
niques: A large-scale investigation in the wild,” in Security and
Privacy in Communication Networks, R. Beyah, B. Chang, Y. Li,
and S. Zhu, Eds. Cham: Springer International Publishing, 2018,
pp. 172–192.

[22] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 ways to leak your data: An exploration of
apps’ circumvention of the Android permissions system,” in 28th
USENIX Security Symposium (USENIX Security 19). Santa Clara,
CA: USENIX Association, Aug. 2019, pp. 603–620.

[23] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo:
Collecting millions of Android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, ser. MSR ’16. New York, NY, USA: ACM, 2016, pp.
468–471.

[24] M. Almansoori, A. Gallardo, J. Poveda, A. Ahmed, and R. Chatterjee,
“A global survey of Android dual-use applications used in intimate
partner surveillance,” in Proceedings on Privacy Enhancing Tech-
nologies Symposium. Privacy Enhancing Technologies Symposium,
2022, pp. 120–139.

[25] Electronic Frontier Foundation, “apkeep - a command-line tool for
downloading APK files from various sources.” [Online]. Available:
https://github.com/EFForg/apkeep

[26] National Institute of Standards and Technology, “A statistical test suite
for random and pseudorandom number generators for cryptographic
applications,” U.S. Department of Commerce, Washington, D.C.,
Tech. Rep. National Institute of Standards and Technology Special
Publication (NIST SP) 800-22, Revision 1, 2010.

[27] J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification using clus-
tering algorithms,” in Proceedings of the 2006 SIGCOMM Workshop
on Mining Network Data, ser. MineNet ’06. New York, NY, USA:
Association for Computing Machinery, 2006, p. 281–286.

[28] O. Aouedi, K. Piamrat, S. Hamma, and J. K. M. Perera, “Network
traffic analysis using machine learning: An unsupervised approach to
understand and slice your network,” Annals of Telecommunications -
annales des télécommunications, vol. 77, pp. 297–309, 2022.

[29] H. Canever and X. Wang, “Network traffic classification using Unsu-
pervised Learning: A comparative analysis of clustering algorithms,”
Jul. 2023, working paper or preprint.

[30] A. Rosenberg and J. Hirschberg, “V-Measure: A conditional entropy-
based external cluster evaluation measure,” in Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-
CoNLL), J. Eisner, Ed. Prague, Czech Republic: Association for
Computational Linguistics, Jun. 2007, pp. 410–420.

[31] D. Boneh, “Twenty years of attacks on the RSA cryptosystem,” in
Notices of the AMS, vol. 46, Feb. 1999, pp. 203–212.

[32] D. Bleichenbacher, “Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS #1,” in Advances in Cryptol-
ogy — CRYPTO ’98, H. Krawczyk, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998, pp. 1–12.

[33] D. Boneh, A. Joux, and P. Q. Nguyen, “Why textbook ElGamal
and RSA encryption are insecure,” in Advances in Cryptology —
ASIACRYPT 2000, T. Okamoto, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2000, pp. 30–43.

[34] S. Vaudenay, “Security flaws induced by cbc padding — applications
to ssl, ipsec, wtls...” in Advances in Cryptology — EUROCRYPT
2002, L. R. Knudsen, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 534–545.

[35] Google, “Provide information for Google Play’s data
safety section,” https://support.google.com/googleplay/android-
developer/answer/10787469?hl=en, [Online; accessed 2024-11-10].

[36] A. Klyubin, “Protecting against unintentional regressions to cleartext
traffic in your Android apps,” Android Developers Blog, Apr. 2016.

[37] Apple Inc., “Preventing insecure network connections,”
https://developer.apple.com/documentation/security/preventing-
insecure-network-connections, [Online; accessed 2024-11-10].

[38] M. Oltrogge, N. Huaman, S. Klivan, Y. Acar, M. Backes, and
S. Fahl, “Why eve and mallory still love android: Revisiting TLS
(In)Security in android applications,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, Aug.
2021, pp. 4347–4364. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/oltrogge

[39] Shumei NEXTDATA, “SMSDK android documentation,” https:
//help.ishumei.com/docs/tw/sdk/android/developDoc/, [Online; ac-
cessed 2024-11-10].

[40] Tencent Cloud, “HTTPDNS configuration information descrip-
tion,” https://www.tencentcloud.com/document/product/1130/44467,
[Online; accessed 2024-11-10].

[41] Alibaba Cloud, “Use mPaaS plug-in,” https://www.alibabacloud.com/
help/en/mobile-platform-as-a-service/latest/use-mpaas-plug-in, [On-
line; accessed 2024-11-10].

[42] A. Possemato and Y. Fratantonio, “Towards HTTPS everywhere on
Android: We are not there yet,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp. 343–
360.

[43] B. Schneier, “Schneier’s Law,” Apr. 2011. [Online]. Available:
https://www.schneier.com/blog/archives/2011/04/schneiers law.html

[44] C. Meyer and J. Schwenk, “SoK: Lessons learned from SSL/TLS
attacks,” in Information Security Applications, Y. Kim, H. Lee, and
A. Perrig, Eds. Cham: Springer International Publishing, 2014, pp.
189–209.

[45] H. Krawczyk, K. G. Paterson, and H. Wee, “On the security of the
tls protocol: A systematic analysis,” in Advances in Cryptology –
CRYPTO 2013, R. Canetti and J. A. Garay, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 429–448.

[46] H. Böck, J. Somorovsky, and C. Young, “Return of Bleichen-
bacher’s oracle threat (ROBOT),” in 27th USENIX Security Sympo-
sium (USENIX Security 18). Baltimore, MD: USENIX Association,
Aug. 2018, pp. 817–849.

[47] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An em-
pirical study of cryptographic misuse in Android applications,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 73–84.

[48] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,
and C. Stransky, “Comparing the usability of cryptographic APIs,”
in 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp.
154–171.

[49] C. Hu and I. Neamtiu, “Automating GUI testing for Android ap-
plications,” in Proceedings of the 6th International Workshop on
Automation of Software Test, ser. AST ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 77–83.

[50] W. Choi, G. Necula, and K. Sen, “Guided GUI testing of android apps
with minimal restart and approximate learning,” in Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, ser. OOPSLA
’13. New York, NY, USA: Association for Computing Machinery,
2013, p. 623–640.

[51] Y.-M. Baek and D.-H. Bae, “Automated model-based Android GUI
testing using multi-level GUI comparison criteria,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 238–249.

[52] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, “Net-
workProfiler: Towards automatic fingerprinting of Android apps,” in
2013 Proceedings IEEE INFOCOM, 2013, pp. 809–817.

[53] Z. Liu, C. Chen, J. Wang, M. Chen, B. Wu, X. Che, D. Wang,
and Q. Wang, “Make LLM a testing expert: Bringing human-like
interaction to mobile GUI testing via functionality-aware decisions,”
in Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering, ser. ICSE ’24. New York, NY, USA:
Association for Computing Machinery, 2024.

[54] H. Wen, Y. Li, G. Liu, S. Zhao, T. Yu, T. J.-J. Li, S. Jiang, Y. Liu,
Y. Zhang, and Y. Liu, “AutoDroid: LLM-powered task automation in
Android,” in Proceedings of the 30th Annual International Conference
on Mobile Computing and Networking, ser. ACM MobiCom ’24.
New York, NY, USA: Association for Computing Machinery, 2024,
p. 543–557.

[55] Y. Ye, Z. Zhang, F. Wang, X. Zhang, and D. Xu, “NetPlier: Proba-
bilistic network protocol reverse engineering from message traces,”
in Proceedings 2021 Network and Distributed System Security Sym-
posium. Internet Society, 2021.

[56] C. Rossow and C. J. Dietrich, “ProVeX: Detecting botnets with
encrypted command and control channels,” in Detection of Intrusions
and Malware, and Vulnerability Assessment, K. Rieck, P. Stewin, and
J.-P. Seifert, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 21–40.

Appendix A.
Additional data from protocol clustering

In Table 4, we provide the top 50 network protocol
clusters, sorted by the cumulative downloads of applications
that sent requests in the cluster. We analyzed the first 18. We
additionally annotated the “Unique indicator” and “Protocol
family” for the data in each cluster.

In Table 5, we provide the most downloaded 80 appli-
cations affected by the vulnerabilities we discovered, with
the version and names of each application.

Appendix B.
Alibaba mPaaS SDK Case Study Details

Our clustering showed that several applications owned
by or affiliated with Alibaba were sending similar network
requests containing base64-encoded payloads of random

#
apps

Cumul.
DLs Protocol family Transport Unique indicator Identified ciphertext Block

size Encoding Vulnerable?

1 76 35.10B Kuaishou HTTP(S)* secretkey= “data” 128 Base64 Decryptable, TLS MITM
2 82 29.33B MobSDK HTTP /dinfo “m” 128 Base64 Decryptable
3 80 29.26B MobSDK HTTP /openid “m” 128 Base64 No OAEP
4 82 28.70B MobSDK HTTP /gcl Body 128 Raw No OAEP
5 61 27.47B MobSDK HTTP /getDuidBlacklist “data” 128 Base64 Decryptable
6 39 26.00B Tencent DNSPod HTTP dn= “dn” 64 Hex Decryptable
7 36 25.38B MobSDK HTTP d/dgen Body 128 Base64 Decryptable
8 68 22.31B MobSDK HTTP /gcf “sc” 128 Base64 Decryptable
9 2 19.83B Alibaba mPaaS HTTP /g9m6 Body 128 Base64 Decryptable

10 7 17.66B Tencent WUP [18] HTTP qbkey= “qbkey”, body 128 Raw Decryptable, No OAEP
11 7 17.66B Tencent WUP HTTP tk= Body 128 Raw Decryptable (padding oracle)
12 3 17.58B Kuaishou HTTP apissl.ksapisrv “device info” 128 Hex Decryptable
13 13 17.55B Alibaba mPaaS HTTP mobileDispatch “secData” 128 Base64 Decryptable
14 4 12.65B iQIYI HTTP qchannel03.cn “data” param 64 Base64 Decryptable
15 37 10.52B Shumei SDK HTTP v3/cloudconf “data” 128 Base64 Decryptable
16 22 9.23B Shumei SDK HTTP v3/profile/android “fingerprint” 128 Base64 Side-channel for file access
17 1 9.23B Tencent MMTLS [5] HTTP,TCP f1 04 00 Body 128 Raw
18 40 7.73B Beizi SDK HTTP sdk.beizi.biz Body 128 Base64 Decryptable

19 2 7.58B Weibo HTTP encry params “encry params” 64 Base64
20 3 7.42B UC Browser HTTP puds Body Varies Raw
21 3 7.42B UC Browser HTTP ucid= Body Varies Raw
22 1 7.30B Weibo HTTP ad/preload “sdk ad params” 128 Hex
23 18 7.20B MobSDK HTTP /api/log Body 128 Base64
24 25 6.30B Hubcloud HTTP api/sdk/task/list Body 128 Base64
25 3 6.29B iQIYI HTTP /drm/register “cert” Varies Base64
26 1 6.26B MobTech HTTP /duc/conf Body 128 Base64
27 1 6.26B iQIYI HTTP /mixer “ed” 128 Base64
28 3 6.04B sm.cn HTTP /sdk log Body 128 Raw
29 9 5.98B data.lianjia.com HTTP /report? Body Varies Raw
30 2 5.70B UC Browser HTTP usquery.php Body Varies Raw
31 8 5.43B MobTech HTTP /api/pv Body 128 Base64
32 7 5.24B XYCloud HTTP /psdk param Body 128 Raw
33 7 5.24B XYCloud HTTP live p2p mobilesdk Body 128 Raw
34 1 5.01B Baidu Map HTTP /cloudmodule Body 128 Base64
35 2 4.69B WifiLocating HTTP /trackData/collect Body 128 Raw
36 2 4.63B QQ HTTP,TCP 13 00 00 Body Varies Raw
37 1 4.45B WifiLocating HTTP /fcompb.pgs Body Varies Raw
38 22 4.32B MobSDK HTTP /v3/bind Body 128 Base64
39 1 4.25B Ximalaya Music HTTP /xrc/rt/v1 Body Varies Raw
40 1 3.30B QQ Music HTTP vkey= “vkey” 64 Hex
41 29 3.18B Tencent Bugly HTTP bugly.qq.com Body Varies Raw
42 1 3.15B QQ News HTTP diffvmind “vkey” 64 Base64
43 24 2.58B Shumei HTTP deviceprofile/v4 “data” 128 Base64
44 1 2.55B Netease Music HTTP ad/loading/current “key” 128 Hex
45 15 2.29B Tencent CDN HTTP license/v1 “encryptedLicense” 128 Base64
46 1 2.11B Dianping HTTP getlivepushdata Body 128 Raw
47 4 2.01B shuzilm.cn HTTP /valid? Body 64 Raw
48 2 1.95B mantis.bayescom HTTP sdkevent JSON “device” 128 Base64
49 9 1.73B Tencent HTTP log.tbs.qq Body, “key” 64 Raw
50 1 1.72B Quark Browser HTTP pdds-cdn Body 64 Raw

TABLE 4. TOP 50 PROTOCOL CLUSTERS, BY CUMULATIVE APPLICATION DOWNLOAD COUNT, ANNOTATED WITH UNIQUE indicators THAT ARE
PRESENT IN ALL REQUESTS IN THE CLUSTER AND NOT IN OTHERS. NOTE THAT BELOW CLUSTER 18, THE “PROTOCOL FAMILY” COLUMN IS

UNCONFIRMED, AND WERE ANNOTATED BASED ON EITHER THE ORIGINATING APPLICATION(S) OR THE COMMON DESTINATION IP
ADDRESSES/DOMAIN NAMES OF EACH PROTOCOL.

data, aligned to AES block sizes. We reverse engineered
three applications that we observed making these requests:

APK package name App name Version
com.taobao.taobao Taobao 10.35.10
com.tmall.wireless Tmall 15.20.0
com.UCMobile UC Browser 17.0.0.1331

These payloads are protected by a common cryptosys-
tem provided by Alibaba’s mPaaS SDK, implemented in
libsgmain*.so. At a high level, this cryptosystem ef-
fectively encrypts payloads via AES-CBC using a static

key. The keys are stored in a local image resource file:
res/drawable/yw_1222.jpg. We provide code for
extracting the key database from any application using this
SDK, de-obfuscating libsgmain*.so, and decrypting
payloads that are encrypted in this manner.

B.1. De-obfuscating mPaaS

The native code obfuscation methods used by
libsgmain*.so required us to develop custom methods
to de-obfuscate and analyze these libraries, including IDA
plugins.

De-obfuscating cryptographic constants and string
literals. To obfuscate their usage of cryptographic constants
and string literals, the libsgmain*.so stored them, en-
crypted, in its data section. We dumped the entire .bss
section of the binary at runtime after observing the behavior
we were interested in further analyzing, allowing us to load
the data from a dump for a selected string literal, array, or
other value to see the decrypted values of these encrypted
constants during analysis. This had the additional benefit of,
when encountering constants that had not been decrypted in
our dump, allowing us to quickly conclude that they and the
code referencing them was unrelated to whatever behavior
we were trying to analyze.

De-obfuscating jumps and function point-
ers.libsgmain*.so contained indirect branches whose
destination addresses were the result of complex arithmetic
computations to confuse disassemblers and decompilers.
To address this, we patched all artificially introduced
indirect branches with corresponding direct, PC-relative
branches. Though IDA’s decompiler and disassembler were
often sophisticated enough to fold the complex arithmetic
computations calculating the indirect jumps’ destination
addresses into constants, both would mistakenly interpret
such jumps as function boundaries. To fix IDA’s function
analysis, we used the destination address computed by
IDA’s decompiler or disassembler to replace these indirect
jumps with corresponding direct, PC-relative jumps.

B.2. Deriving encryption keys

A database of encryption keys is stored, encrypted, in the
static resource file res/drawable/yw_1222.jpg. This
database can also be decrypted with publicly available key
material, as follows. First, a 32-byte key km is derived from
the app’s APK RSA key: a null byte followed by the first 31
bytes of the public bytes of the APK RSA key when DER
encoded and serialized in PKCS#1 format. The header of
res/drawable/yw_1222.jpg contains three IVs, v1,
v2, and v3, followed by the encrypted database ciphertext c.

Let D(ciphertext , key , iv) be AES-CBC decryption.
The plaintext p is derived as

p = D(D(D(D(c, k1, v1), k2, v2), k3, v3), k1, v1), where
k1 = km[0:24], k2 = km[0:16], and k3 = km[0:32].

After being zlib-inflated, p can be parsed as a serialized
dictionary of keys and values. The dictionary values are then
used to derive keys for encryption.

Let E(ciphertext , key , iv) be AES-CBC encryption. Al-
ibaba mPaaS encrypts plaintexts p to ciphertexts c with keys
and IVs derived from the MD5 hex digest of a dictionary
value e such that

c = E(p, k, k), where k = hex(md5(e))[0:16].

As these keys are all derived from public informa-
tion, we can automatically extract the key database
from res/drawable/yw_1222.jpg, derive all possible
keys, and decrypt any requests encrypted using this cryp-
tosystem.

Appendix C.
Kuaishou SDK Case Study Details

HTTP POST requests sent to gdfp.gifshow.com
contain JSON payloads in the POST request body. These
JSON blobs contain base64-encoded encrypted data aligned
to AES block sizes.

Requests to /kuaishou/temp/data/s and
/r/t/h were over unencrypted HTTP, and requests to the
endpoint /f/a/p were additionally tunneled via TLS (i.e.,
were HTTPS POST requests). However, the client SDK
never validates the server’s TLS certificate. We developed
code to decrypt Kuaishou SDK requests, and additionally
developed a PoC to MITM any HTTPS connection to this
domain and decrypt the data within.

Kuaishou’s encryption was reverse engineered from
Kuaishou’s native library libweapon*.so, which is
loaded dynamically by the application.

Decrypting the payload. The network request payload
is first gzip-compressed, then encrypted twice. It is first
encrypted with a custom XOR-mask-like algorithm, and
encrypted again using AES-CBC with PKCS7 padding, both
using the same key. In the case of AES-CBC, the key
is also re-used as the IV. We note that the XOR-mask-
like algorithm is symmetric, e.g., Dxor(Exor(p, k), k) = p.
Below is Pythonic pseudocode for this algorithm:

def expand_key(key):
xorkey = list(range(0, 256))
keyi = 0, j = 0
for i in range(0, 256):

j = key[keyi] + xorkey[i] + j & 0xff
xorkey.swap(i, j)
keyi = (keyi + 1) % len(key)

return xorkey

def xor_decrypt(ciphertext, key):
xorkey = expand_key(key)
o = [], keyi = 0, j = 0
for i in range(0, len(ciphertext)):

keyi = (keyi + 1) & 0xff
j = (xorkey[keyi] + j) & 0xff
xorkey.swap(keyi, j)
o += xorkey[(xorkey[keyi] + xorkey[j])

& 0xff] ˆ ciphertext[i]
return bytes(o)

HTTP POST requests to the endpoints /r/t/h
and /kuaishou/temp/data/s use the key
b'tV3779net2y0VOEs', and HTTPS POST requests to
/f/a/p use the key b'ksriskctlbusinss'.

Although the requests to /f/a/p are additionally en-
crypted using TLS, the client does not validate the TLS
server certificate for these requests. These can be intercepted
and decrypted by network adversaries, e.g., by presenting a
certificate owned by the attacker to conduct a TLS MITM.

Decrypted data payloads. Data decrypted in this way
included hundreds of system settings extracted from the
user’s phone, as well as every *.so module loaded by
the application, and the memory addresses at which they
were loaded. The payloads also contained device make,
manufacturer, and network information.

Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

The paper introduces WireWatch, an automated frame-
work to detect proprietary network encryption in Android
apps. The approach relies on scraping apps from market-
places, executing the apps via automated UI interaction, cap-
turing network traffic, and applying unsupervised k-means
clustering to identify non-standard cryptographic protocols.
The paper provides manual validation of clustering and cus-
tom protocol detection. Furthermore, by extensive manual
reverse engineering efforts, the paper identifies impactful
and widespread vulnerabilities, especially in the Mi Store
ecosystem.

D.1.1. Scientific Contributions.

• Independent Confirmation of Important Results with
Limited Prior Research

• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field

D.2. Reasons for Acceptance

1) While previous studies have reported the usage
of custom cryptographic protocols, their scope has
been limited and lacked comprehensive comparison
between the Google Play Store and Chinese app
markets. This paper presents a large-scale analysis
of custom encryption protocols focusing on the
Google Play and Mi stores, significantly expanding
on prior work.

2) The paper identifies cryptographic vulnerabilities in
apps with a large user base. Vulnerable apps are
prominent in the Mi Store (47% use plaintext traffic
or insecure proprietary encryption).

D.3. Noteworthy Concerns

1) Limited dataset. Although the analysis focuses on
the most downloaded apps from the Google Play
and Mi stores, the dataset only includes the top 1K
for each store. Out of these 2K apps, the framework
successfully executes on 1,699 apps. These repre-
sent only a fraction of the available apps available
on the stores, which could limit the generalizability
of the results.

2) Scalability. While the proposed framework is auto-
mated and scalable at detecting custom encryption

protocols, the paper heavily relies on manual re-
verse engineering efforts to identify vulnerabilities
in the encryption schemes. WireWatch can help
security analysts prioritize which protocols to eval-
uate, but it does not provide insights into the actual
vulnerabilities of the custom protocols used by the
processed apps.

APK name Version Name Translated name DL count Affected by vulnerabilities

com.xunmeng.pinduoduo 7.22.0 拼多多 Pinduoduo 17B DNSPod
com.smile.gifmaker 12.7.20.38014 快手 Kuaishou 11B Kuaishou
com.taobao.taobao 10.39.10 淘宝 Taobao 11B MPaaS
com.eg.android.AlipayGphone 10.6.28.8000 支付宝 Alipay 9B MPaaS
com.kuaishou.nebula 12.7.20.8502 快手极速版 Kuaishou Lite 7B Kuaishou
com.qiyi.video 15.8.0 爱奇艺-《九部的检察官》独播 iQIYI 6B iQIYI
com.UCMobile 17.0.0.1331 UC浏览器-好搜好看好好用 UC Browser 6B Kuaishou
com.xingin.xhs 8.49.0 小红书 Xiaohongshu 5B MobSDK, Shumei
com.snda.wifilocating 5.0.55 WiFi万能钥匙-安全省流 Wifi MasterKey 4B MobSDK
com.ximalaya.ting.android 9.2.78.3 喜马拉雅-818宝藏会员节 Himalaya Music 4B MobSDK, iQIYI
com.wuba 13.11.5 58同城-招聘找工作租房家政买车 58.com 3B MobSDK
com.baidu.netdisk 12.13.10 百度网盘 Baidu Netdisk 2B BeiziSDK
com.taobao.idlefish 7.17.10 闲鱼 Xianyu 2B MPaaS
com.lemon.lv 14.5.0 剪映 CapCut 2B BeiziSDK
com.taobao.litetao 10.32.49 淘宝特价版 Taobao Special Edition 1B MPaaS
cn.kuwo.player 10.9.1.1 酷我音乐 Kuwo Music 1B iQIYI
com.tencent.karaoke 8.24.38.278 全民K歌 National karaoke 1B DNSPod
com.duowan.kiwi 12.2.45 虎牙直播 Huya Live 1B MobSDK
com.tmall.wireless 15.30.0 天猫 Tmall 1B MPaaS
com.shoujiduoduo.ringtone 8.9.76.0 铃声多多-铃声彩铃壁纸来电秀 Lots of Ringtones 1B Kuaishou
com.kmxs.reader 7.54 七猫免费小说 Seven Cats Free Novel 1B MobSDK, Shumei
com.shizhuang.duapp 5.48.1 得物-得到运动x潮流x好物 Dewu Shopping 1B MobSDK
com.baidu.tieba 12.67.1.0 百度贴吧 Baidu Tieba 978M Kuaishou
com.cubic.autohome 11.65.3 汽车之家-5亿人都在用的汽车App Autohome 951M DNSPod, Shumei
com.xunlei.downloadprovider 8.20.0.9405 迅雷 Xunlei Downloads 920M Kuaishou, MobSDK
com.moji.mjweather 9.0878.02 墨迹天气 Moji Weather 913M MobSDK
com.sinovatech.unicom.ui 11.7.2 中国联通 China Unicom 910M MobSDK
com.tencent.wemeet.app 3.28.11.475 腾讯会议 Tencent Meetings 888M DNSPod
com.tencent.map 10.10.5 腾讯地图 Tencent Map 840M DNSPod
com.jifen.qukan 3.20.60.000.0815.0658 趣头条 Qutoutiao 833M Kuaishou, MobSDK
com.alibaba.wireless 11.31.2.0 阿里巴巴 Alibaba 807M MPaaS
air.tv.douyu.android 7.7.9.1 斗鱼-娱乐游戏直播平台 Douyu 765M MobSDK, Shumei, iQIYI
com.sohu.sohuvideo 10.0.55 搜狐视频-长梦留痕全网独播 Sohu Video 763M DNSPod
com.handsgo.jiakao.android 8.62.0 驾考宝典-驾校学车考驾照优选app Driving test guide 755M Kuaishou
com.tencent.wework 4.1.28 企业微信 Enterprise WeChat 683M DNSPod
com.hpbr.bosszhipin 12.14 BOSS直聘 BOSS direct recruitment 576M DNSPod
com.wuba.zhuanzhuan 10.43.0 转转-二手官方验 Zhuanzhuan-Second-hand 551M MobSDK
com.xiachufang 8.8.40 下厨房 Go to the kitchen 532M Kuaishou
com.le123.ysdq 5.9.9 影视大全 Film and television collection 511M Kuaishou, BeiziSDK
com.duowan.mobile 8.44.3 YY YY 423M MobSDK, BeiziSDK
com.qiyi.video.lite 4.8.30 爱奇艺极速版-九部的检察官独播 iQIYI Express 413M Kuaishou
com.fenbi.android.solar 11.56.0 小猿搜题 Ask Xiaoyuan 381M DNSPod
com.taobao.live 3.63.18 点淘-淘宝直播官方APP Diantao - Taobao Live 378M MPaaS
com.duoduo.child.story 6.5.1.3 儿歌多多-18亿父母推荐 Lots of children’s songs 370M Kuaishou
com.kuaiduizuoye.scan 6.31.0 快对-拍照翻译 Kuaidui 365M Kuaishou
cn.xiaochuankeji.tieba 6.2.1 最右 Rightmost 362M Shumei
com.p1.mobile.putong 6.3.8.1 探探 Tantan 355M MobSDK
cmccwm.mobilemusic 7.41.15 咪咕音乐-让音乐更有趣 Migu Music 353M BeiziSDK
com.shuqi.controller 12.2.1.219 书旗小说-海量图书 Shuqi Novel 345M DNSPod
com.kuaikan.comic 7.71.0 快看漫画-快看，你的漫画乐园 Kuaikan Comics 340M Kuaishou
com.sup.android.superb 5.0.7 皮皮虾 Pipi Shrimp 330M Kuaishou
com.ifeng.news2 7.78.1 凤凰新闻 Phoenix News 321M Shumei
com.didapinche.booking 9.64.1 嘀嗒出行-顺风车出租车用嘀嗒 Dida Travel 303M Shumei
com.hupu.shihuo 7.98.0 识货 Know the goods 286M MobSDK
com.lalamove.huolala.client 6.9.81 货拉拉-拉货搬家跑腿 Lalamove 259M DNSPod
com.chaoxing.mobile 6.3.3 学习通 learning pass 249M MobSDK
com.bokecc.dance 8.3.6 糖豆 jelly beans 248M Kuaishou, MobSDK
com.snda.lantern.wifilocating 6.8.28 WiFi万能钥匙极速版 WiFi master key speed version 243M MobSDK
com.tongcheng.android 10.9.1.1 同程旅行-单单返现金 Travel on the same journey 240M MobSDK, DNSPod
com.mygolbs.mybus 6.6.8 掌上公交-精准实时公交查询 Palm Bus 222M Kuaishou, MobSDK, BeiziSDK
com.wudaokou.hippo 6.9.0 盒马 Hema 218M MPaaS
cn.etouch.ecalendar 9.2.6 微鲤万年历-原中华万年历 Micro Carp Perpetual Calendar 216M Kuaishou
com.ganji.android.haoche c 10.10.0.6 瓜子二手车-先试3天再买车 Guazi used cars 208M DNSPod
com.douban.frodo 7.82.0 豆瓣 Douban 206M DNSPod
com.jiongji.andriod.card 7.6.8 百词斩-学英语、背单词必备 Baicizhan 191M MobSDK
com.mymoney 13.1.97.0 随手记-记账就用随手记 SuiShouJi 186M MobSDK
com.kwai.m2u 4.36.0.43602 一甜相机 A sweet camera 183M Kuaishou, BeiziSDK
com.mampod.ergedd 4.1.2 儿歌点点-宝宝儿歌故事动画大全 Children’s Songs Diandian 177M Kuaishou
com.ushaqi.zhuishushenqi 4.85.61 追书神器 Book chasing artifact 175M Kuaishou, Shumei
com.max.xiaoheihe 1.3.331 小黑盒 little black box 173M Shumei
com.fenbi.android.leo 3.89.1 小猿口算-1秒检查作业 Little Yuan’s oral arithmetic 165M DNSPod
com.huajiao 9.3.0.1038 花椒直播 Huajiao Live 152M MobSDK, Shumei
com.fenbi.android.servant 6.17.34.1 粉笔 chalk 147M DNSPod
com.alicloud.databox 6.1.0 阿里云盘 Alibaba cloud disk 144M MPaaS
com.baidu.baidutranslate 11.5.1 百度翻译 Baidu Translate 144M BeiziSDK
com.babytree.apps.pregnancy 9.63.0 宝宝树孕育-备孕怀孕育儿软件 BabyTree Pregnancy 143M BeiziSDK
com.mfw.roadbook 11.1.9 马蜂窝 hornet’s nest 136M MobSDK
com.cctv.yangshipin.app.androidp 3.0.1.24816 央视频 CCTV 130M DNSPod

TABLE 5. MOST DOWNLOADED 80 APPS AFFECTED BY THE VULNERABILITIES WE DISCOVERED, WITH THE VERSION AND NAMES OF EACH
APPLICATION. THE NAMES ARE MACHINE-TRANSLATED WITH SOME CORRECTIONS BY THE AUTHORS.

