
QUICstep: Circumventing QUIC-based Censorship

Watson Jia
Princeton University

Mona Wang
Princeton University

Liang Wang
Princeton University

Prateek Mittal
Princeton University

Abstract
Governments around the world limit free and open communi-
cation on the Internet through censorship. To reliably identify
and block access to certain web domains, censors inspect
the plaintext TLS SNI field sent in TLS handshakes. With
QUIC rapidly displacing TCP as the dominant transport-layer
protocol on the web, censorship regimes have already be-
gun prosecuting network traffic delivered over QUIC. With
QUIC censorship poised to expand, censorship circumven-
tion tools must similarly adapt. We present QUICstep, a
censorship-resilient, application-agnostic, performant, and
easy-to-implement approach to censorship circumvention in
the QUIC era. QUICstep circumvents TLS SNI censorship by
conducting a QUIC-TLS handshake over an encrypted tunnel
to hide the SNI field from censors and performs connection
migration to resume the QUIC session in plain sight of the
censor. Our evaluation finds that QUICstep successfully es-
tablishes QUIC sessions in the presence of a proof-of-concept
censor with minimal latency overhead.

1 Introduction

Internet censors implement a variety of techniques to selec-
tively identify connections to censored websites using deep
packet inspection (DPI) middleboxes [1]. Today, one widely
used technique is to inspect the server name indication (SNI)
or other fields present in TLS handshakes [2]. Censorship
circumvention tools have been proposed to enable access to
censored websites even in the presence of blocking. However,
tools such as Tor and VPNs can be relatively high-latency
and low-bandwidth when compared to native network connec-
tions. In addition to performance considerations, operating
networks as part of VPN deployments can be expensive.

Most past advances in censorship circumvention have fo-
cused on TCP-based protocols or fooling TCP session state
management on middleboxes [3–15]. However, the Internet is
rapidly moving towards next-generation transport protocols
like QUIC. The next generation of web protocols, HTTP/3, is

built on top of QUIC. Already, QUIC is supported in many ma-
jor browsers, and 25% of the top 10 million websites already
support HTTP/3 [16–19]. In early 2022 one firm reported up
to 16% of Internet traffic in North America was over QUIC,
and 30% of traffic in Europe, the Middle East, and Africa [20].
These numbers are growing, and as this shift occurs, censors
will soon adopt new methods to manage QUIC traffic, and
circumvention methods must also adjust to the new landscape.

We propose and evaluate QUICstep, a censorship circum-
vention technique that circumvents network censorship lever-
aging the connection migration capability of QUIC, which is
designed for seamless mobility to allow the client’s IP address
to change within the life of a connection. Leveraging connec-
tion migration, QUICstep conducts a QUIC-TLS handshake
over an encrypted tunnel and seamlessly migrates the session
to the default, direct network path upon completion of the
handshake. The encrypted tunnel hides any plaintext hand-
shake fields from the censor, allowing a client to establish
a QUIC session with a censored server, and the default net-
work path offers low latency. QUICstep introduces minimal
overhead by performing only one connection migration and
minimizing the number of packets sent over a higher latency
encrypted tunnel.

We evaluate QUICstep against a proof-of-concept censor
we developed and demonstrate that QUICstep allows a client
to establish a QUIC session with a server in the presence of
censorship. We also evaluate the performance of a QUICstep
connection by comparing its latency to that of a censorship-
vulnerable native connection and a fully-proxied connection.
We show that there is minimal additional latency using our ap-
proach when compared to a native connection, and significant
performance advantages when compared to a fully-proxied
connection. Finally, in our discussion, we provide suggestions
for future work that will enable widespread deployment of
QUICstep as the Internet moves towards QUIC.

1

ar
X

iv
:2

30
4.

01
07

3v
1

 [
cs

.C
R

]
 3

 A
pr

 2
02

3

2 Background and Related Work

We provide an overview of QUIC, including a summary of
connection migration, QUIC-TLS handshakes, QUIC censor-
ship, and usage of QUIC in building privacy enhancing tools.
Censorship and censorship circumvention are areas that are
composed of social, economic, and technical elements - we
focus on the technical aspects of censorship. We also summa-
rize recent related work leading up to the problem we address
in this paper.

2.1 QUIC
QUIC is a transport layer protocol based on UDP and supports
multiplexing of application-layer data streams [21]. QUIC
was developed to improve the performance of web applica-
tions compared to TCP and forms the basis of HTTP/3. QUIC
is being rapidly adopted and major large services and CDNs
are spearheading its deployment. The meteoric rise of QUIC
is likely to continue as HTTP/3 has been standardized as an
RFC [22].
Connection migration. QUIC connections can be migrated
across networks as they are no longer tied to the TCP 4-tuple;
rather, QUIC connections utilize a set of connection identi-
fiers for servers to uniquely identify clients. The decoupling of
QUIC connections from IP addresses and ports allows connec-
tions to be maintained even as clients move between different
networks, which is known as connection migration. When a
client detects a network change, the client performs a round-
trip path validation to ensure that the server is still reachable
before resuming the connection. Connection migration can
only occur after a connection has been fully established be-
tween a client and server in a QUIC-TLS handshake. QUIC’s
connection migration enables massive performance improve-
ments for mobile users, as it persists connections even when
clients move across networks. Our paper makes a novel use
of this feature originally designed for mobile performance, in
the context of censorship circumvention.
QUIC-TLS handshake. QUIC is designed as a secure-by-
default protocol that mandates encryption of data in transit.
To achieve this, QUIC is integrated with TLS to provide trans-
port layer security. Compared to traditional TLS over TCP,
QUIC-TLS has several security enhancements by rolling to-
gether the QUIC and TLS handshake, in addition to the per-
formance gain inherent to eliminating a round-trip during the
handshake. Notably, QUIC-TLS also encrypts the initial pack-
ets exchanged during a handshake. In fact in Turkey, after
the blocking of a social media website when users criticized
the government handling of the 2023 Turkey-Syria earth-
quake fallout, the site developers reported that users could
circumvent SNI-based censorship by forcing QUIC on the
domain [23].

However, the initial encryption does not offer strong con-
fidentiality assurances since the keys used to encrypt the ini-

tial packets are accessible to anyone observing the connec-
tion. Eavesdroppers can extract these keys and decrypt the
handshake packets to scrutinize the contents of the packets.
While this process requires additional effort by network cen-
sors, network-level adversaries can still scrutinize QUIC-TLS
handshake packets and impose censorship based on the TLS
SNI field, thereby making HTTP/3 connections vulnerable to
censorship.
QUIC-based censorship. QUIC is not yet universally de-
ployed, but studies have measured and found censorship, inci-
dental or otherwise, of QUIC and HTTP/3 traffic in countries
like China, India, and Iran [24]. More recently, evidence of
QUIC censorship has been recorded in Russia, China, India,
and Uganda - in particular, Russian ISPs may be deploying
deep packet inspection with SNI blacklists [25].
QUIC and other privacy use cases. Other work has ex-
plored the usage of QUIC properties in building privacy-
enhancing technologies. MIMIQ utilizes QUIC’s connec-
tion migration to obscure IP addresses from network ob-
servers [26]. CoMPS utilizes this property to split encrypted
traffic across various network paths as a web fingerprinting
defense [27]. TurboTunnel proposes incorporating transport-
layer protocols like QUIC to build session and reliability
guarantees into censorship circumvention systems [28].

2.2 Censorship circumvention
Many approaches proposed to circumvent network censorship
involve various forms of encrypted tunneling, including use
of Tor or VPN. In the face of overzealous IP blocking, active
probing, and other techniques to prevent connections to VPNs
or Tor nodes, researchers at Tor and elsewhere have developed
various pluggable transports to obfuscate circumvention traf-
fic, including obfs4, meek, and Snowflake [11, 13, 29]. Other
reliable circumvention techniques rely on hiding or otherwise
obfuscating the server name from the TLS handshake, includ-
ing domain fronting and domain hiding [14]. Some CDN
providers no longer support connections with mismatching
SNI and HTTP hostnames, or connections with both SNI and
ESNI fields [30, 31].
TLS session resumption. TLS session resumption has been
used as a way to circumvent SNI censorship. Introduced in
TLS 1.2, session resumption reduces the need for clients to
conduct handshakes for each TLS connection. When a TLS
session is first established, the server sends a unique ticket to
the client which can be used by the client to resume a TLS
session with the server. MultiFlow and REDACT propose
using session resumption to enable decoy routing [32, 33].
More recently, BlindTLS proposes establishing a connection
to a censored domain through a VPN proxy and resuming the
session in plain sight of the censor using TLS session resump-
tion [34]. However, this approach focuses on session resump-
tion in TLS 1.2, and it is not yet clear whether BlindTLS is
compatible with session resumption in TLS 1.3. In contrast

2

blocke
d.com

DNS

Site host

blocked.com

site data

(a) Adversary model

blocked.com DNS

Site host

site data

blocked.comEncrypted
proxy

(b) QUICstep design

DNS request

handshake

connection migration

Encrypted
proxy Site host DNS

site data

(c) QUICstep network requests

Figure 1: This figure demonstrates our adversary model and how QUICstep can be leveraged to circumvent censorship. (a)
demonstrates an adversary censor capable of monitoring client traffic, blocking or disrupting traffic based on plaintext sensitive
fields that may be present within HTTP requests. (b) illustrates the architecture of QUICstep under this adversary model. Finally,
(c) demonstrates at a high level the full set of network requests performed by QUICstep.

with BlindTLS, our approach is compatible with TLS 1.3 and
is designed to be independent of TLS version. Moreover, SNI
censorship circumvention literature has focused on the tradi-
tional TCP setting, and the web’s transition to QUIC opens
up new research areas. Our work is the first to thoroughly
investigate how we can leverage QUIC connection migration
to circumvent SNI censorship.
CoMPS. Finally, a QUICstep-like architecture was briefly
mentioned by Wang et. al as a potential downstream use case
for CoMPS, a connection-migration traffic splitting frame-
work. The main purpose of CoMPS was to improve robust-
ness against website fingerprinting, so it was not evaluated
for deployment feasibility or performance for the censorship
circumvention use case [27]. In this paper, we implement and
evaluate the proof-of-concept, and discuss practical deploy-
ment challenges that may arise for circumvention developers.

3 Design and implementation

In this section, we describe the design of QUICstep. Our pri-
mary design goals are to circumvent SNI censorship while
minimizing overall latency overhead. Additionally, our design
aims to minimize modifications to client-side software and
avoid requiring modifications to server-side software. More-
over, our design aims to maximize flexibility and compatibil-
ity by being agnostic to underlying client technologies and
protocols, including but not limited to TLS version, encrypted
tunnel, operating system, and browser. Our contribution is
an easy-to-implement, performant proof-of-concept censor-
ship circumvention tool whose only underlying technical re-
quirement is client and server support for QUIC connection
migration.

3.1 Threat model
A client in a censored network seeks to access a censored do-
main, which is hosted outside the censored network, through

HTTP/3.The censor uses DPI techniques such as DNS and
SNI filtering to identify and prevent such access. Specifically,
the censor has the capability to decrypt QUIC-TLS initial
packets and reveal the TLS SNI field. We assume that the
client already has access to some encrypted tunnel (e.g. VPNs,
Tor) outside of the censored network, and that this tunnel is
not blocked by the censor. We assume that the censor is un-
able to break the security guarantees of QUIC or encrypted
tunnels, and the censor will not attack the availability of cer-
tain classes of web traffic as part of censorship (e.g. blocking
all QUIC traffic). While a censor could choose to do so, this
would incur additional undesirable social and economic costs
as this would likely affect non-censored web traffic. Figure
1a illustrates a censored network that is a representation of
our threat model.

3.2 System design

The design of QUICstep seeks to achieve the following goals:

• Censorship-resilience. The censor is not able to learn the
censored domain the client is visiting by inspecting or
analyzing the network traffic produced by our approach.

• Application-agnostic. Our approach shall be compati-
ble with the vast technological environments that clients
and servers may be running in, e.g., requiring no mod-
ifications to client applications, upper-layer protocols,
operating systems, and browsers.

• Low performance overhead. Our approach shall intro-
duce minimal performance overhead compared to exist-
ing censorship circumvention techniques.

Driven by these goals, we present QUICstep. Figure 1b
describes QUICstep at a high level. The following are fea-
tures of QUICstep, each presented in the context of the above
design goals.

3

Hide handshakes using encrypted network paths. In
QUICstep, the client maintains two distinct network paths
to the QUIC server that hosts the censored domain: a low-
latency, non-encrypted (direct) path, and a high-latency en-
crypted tunnel. 1 To circumvent QUIC-TLS SNI censorship,
the client conducts a QUIC-TLS handshake with a QUIC
server over the encrypted tunnel, hiding the TLS SNI value
(and DNS requests) from the censor. Assuming that the cen-
sor is not able to violate the confidentiality guarantees of
the encrypted tunnel, QUICstep elides censorship based on
sensitive values like DNS hostname or TLS SNI.

Improve performance by switching to unencrypted net-
work paths. After the completion of the QUIC-TLS hand-
shake, a QUIC session is established between the server and
the client. The client then immediately migrates the connec-
tion to the unencrypted network path to continue the commu-
nication with the server. The rest of the packets will be sent
over a native QUIC connection with no extra tunnels, which
minimizes the latency of QUICstep.

Seamless path switching via connection migration. The
connection migration feature of QUIC ensures that path
switching between the unencrypted and encrypted paths only
introduces one RTT of latency (i.e., path validation), and will
not disrupt the ongoing session between the client and the
server.

In comparison to a native QUIC connection, QUICstep in-
curs some additional latency due to conducting the handshake
over the encryption tunnel and path validation during path
switching. However, we expect that this latency overhead will
be amortized since most of the time the client communicates
directly with the server over a native connection. We also
expect that QUICstep will be more performant than other
tunnel-based censorship circumvention approaches such as
Tor and VPNs.

Flexibility in a mixed TCP-QUIC world. Although the
adoption of QUIC-based protocols continues to grow, secu-
rity and protocol upgrades can take a long time to percolate
throughout the entire Internet. We may expect that most web
connections will be driven by a mixed combination of TCP
and QUIC connections in the long-term, with web services
slowly porting over to QUIC for the protocol upgrade and
performance gain. QUICstep in practice also works well for
this mixed-protocol world.

QUICstep imposes no restrictions to upper-layer protocols
or client applications being used, and does not necessitate
any changes apart from requiring that the client and server
employ QUIC implementations that enable connection migra-
tion. We will demonstrate soon that QUICstep can be easily
instantiated, with only four iptables rules and shell scripts.

1By“non-encrypted” we mean no extra encryption layer beyond what is
already provided by the application protocols themselves.

Site host

non-handshake
QUIC traffic

blocked.com

Wireguard
proxy

wg0

eth0

QUIC
client

Client device

encrypted

traffic

Censoring
handshake data

Figure 2: Diagram of setup for feasibility and performance
evaluation. Though QUICstep works in theory with any en-
crypted tunnel, for our proof-of-concept we implement QUIC-
step using a Wireguard tunnel. We selectively send certain
types of traffic (DNS traffic, handshake traffic) over the Wire-
guard tunnel and the rest over the native network.

3.3 Implementation
During a QUIC-TLS handshake, a client will first make a
DNS query to a censored domain. Since DNS hostnames
are sensitive and often in plaintext, we add routing rules us-
ing ip rule to route DNS queries over the encrypted tunnel
to circumvent DNS censorship. We then route QUIC-TLS
handshake packets through the encrypted tunnel to circum-
vent TLS-SNI censorship. To do this, we perform a firewall
match for the transport layer protocols associated with QUIC
and the headers present in a QUIC-TLS handshake using
iptables. We believe this implementation to be robust given
that DNS and QUIC traffic adhere to their specifications. Af-
ter the handshake, since both sides start sending packets that
are non-handshake packets, the remainder are not matched
by the firewall and are instead routed over the native network.
This induces connection migration process from either peer
who recognizes the network change, causing a round-trip path
validation. To easily spin up an encrypted tunnel along with
these routing and firewall rules, we chose Wireguard as our
VPN provider due to its ease and control over configuring
network interfaces.

Figure 1c illustrates the implementation of QUICstep.
The code for this proof-of-concept implementation, and for
our evaluations, is made available at https://github.com/
inspire-group/quicstep.

4 Evaluation

We evaluate our proof-of-concept QUICstep implementation.
We first evaluate QUICstep in its ability to circumvent a proof-
of-concept censor that blocks QUIC-TLS handshake packets.
We then evaluate the performance and show that the latency
overhead of QUICstep (generally, the cost of one network
round-trip for connection validation purposes) is amortized
over the whole connection.

4

https://github.com/inspire-group/quicstep
https://github.com/inspire-group/quicstep

Setup. The QUIC client is running on an Ubuntu 20.04 virtual
machine located in the Greater New York area. The QUIC
web server is located on an AWS EC2 instance in the Virginia
region. The web server serves a randomly generated 1MB
or 10MB file. We use Chromium QUICHE to implement
the client and server due to its support for connection migra-
tion [35]. We choose WireGuard as the encrypted tunnel. A
WireGuard server is running in AWS EC2 at varied locations.
The client’s virtual machine has two physical network inter-
faces: one routes traffic on the direct unencrypted path via
native QUIC, and one routes traffic via the WireGuard tunnel.
We show the evaluation setup in Figure 2.

4.1 Feasibility evaluation against a proof-of-
concept QUIC censor

We evaluate the ability of QUICstep to circumvent a censor
who attempts to block client access to censored domains based
on handshake packets. Ideally, we would evaluate QUICstep
on vantage points located in networks using real deployed DPI
middleboxes conducting SNI-based censorship of QUIC traf-
fic. In the recent past, the most concrete observation of QUIC-
SNI censorship has been in Russia where ISPs likely have the
ability to decrypt QUIC handshake packets and match the SNI
field to a blacklist [25]. However, in the time since the recent
armed conflict between Ukraine and Russia, these original
vantage points are no longer accessible, and it is currently
difficult to ethically conduct censorship testing in Russia with
the present geopolitical situation. Due to these difficulties,
we implemented our own proof-of-concept (PoC), real-time
QUIC censor for the purposes of testing the censorship re-
silience of QUICstep. We leave a more comprehensive QUIC
censor implementation or an evaluation of QUICstep within
real censored vantage points for future work.

The PoC censor attempts to block all QUIC connections.
Any connection that includes a QUIC handshake will be
dropped by the PoC censor. We argue that if QUICstep is able
to circumvent a coarse-grained censor, then it will be able to
circumvent a finer-grained censor that performs SNI filtering
on QUIC traffic. We implemented this censor in the form of a
local proxy. It has an additional firewall rule that matches and
drops all QUIC handshake packets while forwarding other
network traffic as usual. The client’s traffic is directed through
this proxy before leaving the testbed network.

Our tests showed that the client failed to establish a
QUIC session with the web server using native QUIC con-
nections, while QUICstep succeeded. Our solution, QUIC-
step, uses an encrypted tunnel to conceal the fact that a client
is attempting to initiate a connection to a censored domain,
providing reliable resistance against SNI censorship.

4.2 Performance evaluation
Our goal in the performance evaluation is to demonstrate that
the overhead of a single connection migration is then amor-
tized over the entire connection. We compare the latency of
HTTP/3 GET requests when using a low-latency, censorship-
vulnerable link (native QUIC), a high-latency, secure tunnel
(WireGuard), and QUICstep to examine the additional latency
incurred by our design.

We measure the latency of 250 HTTP/3 GET requests to
fetch the 1 MB or 10 MB files, and calculate the cumulative
distribution function (CDF) of the latency for each network
connection. We also varied the location of the Wireguard
proxy (Ohio and Oregon). We present the results in Figure 3.

Recall that QUICstep causes an increase in latency during
a QUIC handshake due to two reasons: first, all handshake
packets go through an encrypted tunnel via a VPN proxy, and
second, path validation occurs after the connection migration.
However, we expect this additional latency to be amortized be-
cause the rest of the QUIC session continues directly between
the client and the server. The amortized effect is captured
in Figure 3 — we can see that under all cases the CDF of
latency for QUICstep closely follows that of a low latency
link, while conversely, the CDF of a high latency tunnel is no-
ticeably shifted to the right of both the QUICstep connection
and low latency link CDFs. This shows that tunneling all net-
work traffic through an encrypted tunnel incurs significantly
more latency than QUICstep. The benefits of amortizing the
additional latency in QUICstep are especially advantageous
when the latency of the encrypted tunnel is higher, as seen
in subfigures 3b and 3d where the location of the proxy is
varied.

The latency advantage of QUICstep over a proxied connec-
tion is clearer as QUICstep allows the client to communicate
directly with the server in Virginia over native QUIC after
completing the handshake, as opposed to sending all traf-
fic through the proxy. In practice, it may not always be the
case that the client communicates with a geographically close
server since CDNs and load balancers will choose web servers
close to the proxy node. However, by design, QUICstep will
still perform faster than a fully proxied connection.

5 Discussion

QUICstep presents a promising direction for censorship cir-
cumvention in a QUIC-first world. In this section, we discuss
additional barriers and challenges to large-scale deployment
and efficacy of this technique, and propose a roadmap of fu-
ture work to get there.

5.1 Deployment challenges
The success of QUICstep in the future depends not only on
the ongoing deployment and popularity of QUIC, but var-

5

300 400 500 600
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

High Latency Secure Tunnel
Censorship Vulnerable Native Link
QUICstep Connection

(a) Ohio, 1 MB

400 600 800 1000 1200
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

High Latency Secure Tunnel
Censorship Vulnerable Native Link
QUICstep Connection

(b) Oregon, 1 MB

1000 1500 2000 2500 3000
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

High Latency Secure Tunnel
Censorship Vulnerable Native Link
QUICstep Connection

(c) Ohio, 10 MB

1000 1500 2000 2500 3000 3500
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

High Latency Secure Tunnel
Censorship Vulnerable Native Link
QUICstep Connection

(d) Oregon, 10 MB

Figure 3: The CDFs for the latency of 250 HTTP/3 GET requests for a 1 MB or 10 MB file using QUICstep, a censorship-
vulnerable low latency link, and a secure yet high latency tunnel. The Wireguard proxy is varied between two locations, Ohio and
Oregon. We can see QUICstep has minimal additional latency when compared to a native network connection while conducting
the entire request through a proxy incurs much more latency.

ious other factors that come into play when deploying the
technique in practice.

5.1.1 Observability of QUICstep

Although QUICstep usage is theoretically indistinguishable
from a regular connection migration, in practice connection
migrations due to network changes may be quite rare. As
such, this technique is less fingerprintable than other similar
proposals [34], but certain network patterns may be correlated
to the frequent usage of QUICstep.

To be specific, when using QUICstep, a native QUIC con-
nection is divided into two sub-connections: handshake and
non-handshake. To detect QUICstep, DPI may need to cor-
relate network traffic related to these two sub-connections
via timing attacks, which can require a large amount of state.
Alternatively, a DPI middlebox could block all connections
that look like they were migrated (where the associated con-
nection ID was not observed in a handshake), but this would
cause false positives for regular clients experiencing a regular
network change. An additional complication is that connec-
tion can change connection IDs independent of connection
migrations as well. Therefore, several intriguing research
questions arise: Can current real-world DPIs handle mobile
network protocols? Can DPIs be designed to handle and con-
trol network-mobile clients efficiently? We leave these as
future work.

5.1.2 Broad QUIC protocol blocking and monitoring

Researchers have observed that the QUIC protocol is blocked
altogether in many regions [25]. We believe this is due to
the fact that most deployed network middleboxes do not yet
have the capability to decipher or manage QUIC connec-
tions, and rely on TCP-based metadata in order to enact net-
work controls. In the context of QUIC, we can consider this a
widespread downgrade attack as it forces websites to utilize
TCP rather than QUIC. Many DPI middleboxes are also in

the midst of developing support for QUIC connection man-
agement [36–38]. As QUIC protocols like HTTP/3 become
increasingly widespread and network management tooling
adapts to the new QUIC paradigms, we identify a need for
a non-downgradable protocol upgrade to QUIC. This way,
the collateral damage of blocking all QUIC connections to
grow to disincentivize networks from widespread protocol
blocking in the future.

Further work investigating the current state of QUIC censor-
ship and its methods in various countries is necessary and will
also inform the development and deployment of censorship-
resilient networking tools in the age of QUIC. Evaluating
our design against real-world QUIC censors to evaluate its
efficacy is also an area of future work.

5.1.3 Understanding QUIC connection migration sup-
port in the wild

QUICstep requires that both the client and server commu-
nicate using QUIC. This limits the applicability of our cen-
sorship circumvention scheme to web clients that support
QUIC as well as web domains hosted on servers that support
QUIC. We measured the QUIC support of the Top 100 K do-
mains from each of the Alexa [39], Majestic [40], and Cisco
Umbrella [41] domain lists in February 2023 using the scan-
ner developed by Smith et al. [42]. Out of 244,196 domains,
41,986 (17.2%) advertised QUIC support. We believe that
this limitation will become less of a problem as time goes on
due to the recent standardization of QUIC.

We do acknowledge that the continued growth and adop-
tion of QUIC across the web does not necessarily mean the
expansion of support for connection migration. Though con-
nection migration is defined in the QUIC RFC, various im-
plementations do not yet fully support this feature. Addi-
tionally, there is a potential issue with cross-compatibility or
interoperability between connection migration capabilities
offered by different QUIC libraries. We would like to point
out that, based on our preliminary observation, the QUIC
disable_active_migration transport parameter is not a

6

reliable way to identify connection migration support. It only
tells if a website does not support active connection migra-
tion (migration explicitly initiated by the client), but websites
that do not support active connection migration may still sup-
port passive connective migration (migration triggered by a
network change that the client is not aware of, such as NAT
rebindings). Besides, not all QUIC websites advertise this
parameter. We are currently working on measuring QUIC
connection migration support across various clients and web-
sites.

5.2 Other QUICstep-like systems
QUICstep defers connection state management to the default
QUIC stacks of the client and server, for simplicity of deploy-
ment and practicality. If we generalize this system, a trusted
provider of censorship-resilient communications (for instance,
a trusted VPN or Tor) located outside the censored network
could be responsible for maintaining a database of active
QUIC connection IDs and session keys to commonly cen-
sored websites. Then, a modified QUIC client could “migrate"
connections from this store. In QUICstep, the connection ID
and session keys are communicated through the default hand-
shake via an encrypted proxy; in this hypothetical system,
connection IDs can be communicated via any other channel.

We may also be able to leverage QUICstep-like techniques
to subvert other network controls that are not implemented
at the network layer. For instance, geoblocking can be im-
plemented at the application-layer. It may be interesting to
evaluate the use case for QUICstep for evading geoblock-
ing, particularly for access to high-bandwidth applications or
resources.
Decoy routing applications. Researchers have proposed var-
ious uses of TLS session resumption as a covert channel for
decoy routing [32,33]. A similar use of connection migration,
via sharing connection IDs and session keys, could be feasi-
ble. There has yet to be significant research in the benefits of
QUIC to decoy routing applications.

References

[1] R. Sundara Raman, P. Shenoy, K. Kohls, and R. Ensafi,
“Censored planet: An internet-wide, longitudinal cen-
sorship observatory,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security, ser. CCS ’20. New York, NY, USA: Associa-
tion for Computing Machinery, 2020, p. 49–66. [Online].
Available: https://doi.org/10.1145/3372297.3417883

[2] K. Bock, G. Naval, K. Reese, and D. Levin, “Even cen-
sors have a backup: Examining china’s double https
censorship middleboxes,” in Proceedings of the ACM
SIGCOMM 2021 Workshop on Free and Open Commu-
nications on the Internet, 2021, pp. 1–7.

[3] R. Dingledine, N. Mathewson, and P. Syverson, “Tor:
The second-generation onion router,” Naval Research
Lab Washington DC, Tech. Rep., 2004.

[4] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and
I. Goldberg, “Skypemorph: Protocol obfuscation for tor
bridges,” in Proceedings of the 2012 ACM conference
on Computer and communications security, 2012, pp.
97–108.

[5] Q. Wang, X. Gong, G. T. Nguyen, A. Houmansadr,
and N. Borisov, “Censorspoofer: asymmetric commu-
nication using ip spoofing for censorship-resistant web
browsing,” in Proceedings of the 2012 ACM conference
on Computer and communications security, 2012, pp.
121–132.

[6] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeis-
ter, S. Cheung, F. Wang, and D. Boneh, “Stegotorus: a
camouflage proxy for the tor anonymity system,” in Pro-
ceedings of the 2012 ACM conference on Computer and
communications security, 2012, pp. 109–120.

[7] P. Winter, T. Pulls, and J. Fuss, “Scramblesuit: A poly-
morphic network protocol to circumvent censorship,” in
Proceedings of the 12th ACM workshop on Workshop
on privacy in the electronic society, 2013, pp. 213–224.

[8] S. Li, M. Schliep, and N. Hopper, “Facet: Streaming
over videoconferencing for censorship circumvention,”
in Proceedings of the 13th Workshop on Privacy in the
Electronic Society, 2014, pp. 163–172.

[9] L. Dixon, T. Ristenpart, and T. Shrimpton, “Network
traffic obfuscation and automated internet censorship,”
IEEE Security & Privacy, vol. 14, no. 6, pp. 43–53,
2016.

[10] “Tor project, obfsproxy3.” [Online]. Avail-
able: https://gitweb.torproject.org/pluggable-transports/
obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt

[11] “Tor project, obfsproxy4.” [Online]. Avail-
able: https://github.com/Yawning/obfs4/blob/master/
doc/obfs4-spec.txt

[12] “Racecar project, obfsproxy5.” [Online]. Available:
https://racecar.cs.georgetown.edu/software/

[13] “Tor project, meek.” [Online]. Available: https:
//gitlab.torproject.org/legacy/trac/-/wikis/doc/meek

[14] D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Pax-
son, “Blocking-resistant communication through do-
main fronting.” Proc. Priv. Enhancing Technol., vol.
2015, no. 2, pp. 46–64, 2015.

7

https://doi.org/10.1145/3372297.3417883
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://racecar.cs.georgetown.edu/software/
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/meek
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/meek

[15] Z. Wang, Y. Cao, Z. Qian, C. Song, and S. V. Krishna-
murthy, “Your state is not mine: A closer look at evading
stateful internet censorship,” in Proceedings of the 2017
Internet Measurement Conference, 2017, pp. 114–127.

[16] D. Schinazi, F. Yang, and I. Schwett, “Chrome is de-
ploying http/3 and ietf quic,” Chromium Blog, Oct 2020.
[Online]. Available: https://blog.chromium.org/2020/
10/chrome-is-deploying-http3-and-ietf-quic.html

[17] D. Damjanovic, “Quic and http/3 support now in
firefox nightly and beta,” Mozilla Hacks, Apr 2021.
[Online]. Available: https://hacks.mozilla.org/2021/04/
quic-and-http-3-support-now-in-firefox-nightly-and-beta/

[18] J. Kehr, “What’s quic?” Microsoft
Tech Community, Aug 2021. [Online].
Available: https://techcommunity.microsoft.com/t5/
networking-blog/what-s-quic/ba-p/2683367

[19] “Usage statistics of http/3 for websites,” W3Techs, 2023.
[Online]. Available: https://w3techs.com/technologies/
details/ce-http3

[20] A. Havang, “Quic is quicly taking over!” Jan 2022.
[Online]. Available: https://www.sandvine.com/blog/
quic-is-quickly-taking-over

[21] J. Iyengar and M. Thomson, “Rfc 9000: Quic: A udp-
based multiplexed and secure transport,” Omtermet Em-
gomeeromg Task Force, 2021.

[22] M. Bishop, “Rfc 9114: Http/3,” 2022.

[23] S. Kappanoğlu, “turkish ISPs use two methods
for blocking access...” https://twitter.com/esesci/status/
1630024112071491586. [Online]. Available: https:
//twitter.com/esesci/status/1630024112071491586

[24] K. Elmenhorst, B. Schütz, N. Aschenbruck, and
S. Basso, “Web censorship measurements of http/3 over
quic,” in Proceedings of the 21st ACM Internet Measure-
ment Conference, 2021, pp. 276–282.

[25] K. Elmenhorst, “A quick look at quic censorship,” Apr
2022. [Online]. Available: https://www.opentech.fund/
news/a-quick-look-at-quic/

[26] Y. Govil, L. Wang, and J. Rexford, “Mimiq: Masking ips
with migration in quic,” in 10th USENIX Workshop on
Free and Open Communications on the Internet (FOCI),
2020.

[27] M. Wang, A. Kulshrestha, L. Wang, and P. Mit-
tal, “Leveraging strategic connection migration-
powered traffic splitting for privacy,” arXiv preprint
arXiv:2205.03326, 2022.

[28] D. Fifield, “Turbo tunnel, a good way to design cen-
sorship circumvention protocols.” in FOCI@ USENIX
Security Symposium, 2020.

[29] “Tor project, snowflake.” [Online]. Avail-
able: https://gitlab.torproject.org/tpo/anti-censorship/
pluggable-transports/snowflake/-/wikis/home

[30] E. Doerr, “Securing our approach to domain fronting
within azure,” Mar 2021. [Online]. Available: https:
//www.microsoft.com/en-us/security/blog/2021/03/26/
securing-our-approach-to-domain-fronting-within-azure/

[31] C. MacCarthaigh, “Enhanced domain protections for
amazon cloudfront requests,” Apr 2018. [Online].
Available: https://aws.amazon.com/blogs/security/
enhanced-domain-protections-for-amazon-cloudfront-requests/

[32] V. Manfredi and P. Songkuntham, “Multiflow: Cross-
connection decoy routing using {TLS} 1.3 session re-
sumption,” in 8th {USENIX} Workshop on Free and
Open Communications on the Internet ({FOCI} 18),
2018.

[33] A. Devraj, L. Wang, and J. Rexford, “Redact: refrac-
tion networking from the data center,” ACM SIGCOMM
Computer Communication Review, vol. 51, no. 4, pp.
15–22, 2021.

[34] S. Satija and R. Chatterjee, “Blindtls: Circumventing
tls-based https censorship,” in Proceedings of the ACM
SIGCOMM 2021 Workshop on Free and Open Commu-
nications on the Internet, 2021, pp. 43–49.

[35] Google, “QUICHE,” https://quiche.googlesource.com/
quiche/, 2022.

[36] L. Deri, “nDPI Encrypted Traffic Analysis,”
https://ripe80.ripe.net/presentations/35-nDPI_RIPE_
052020.pdf, 2020.

[37] C. Yu, “GQUIC Protocol Analysis and Finger-
printing in Zeek,” https://engineering.salesforce.com/
gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f/,
2022.

[38] S. S. FUNCTIONALITY, “From TCP to QUIC.
Stingray SG Signatures,” https://vasexperts.com/blog/
functionality/from-tcp-to-quic/, 2022.

[39] Alexa, “Alexa top 1 million sites,” 2023. [Online]. Avail-
able: http://s3.amazonaws.com/alexa-static/top-1m.csv.
zip

[40] Majestic, “The majestic million,” 2023. [Online].
Available: https://majestic.com/reports/majestic-million

8

https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.html
https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.html
https://hacks.mozilla.org/2021/04/quic-and-http-3-support-now-in-firefox-nightly-and-beta/
https://hacks.mozilla.org/2021/04/quic-and-http-3-support-now-in-firefox-nightly-and-beta/
https://techcommunity.microsoft.com/t5/networking-blog/what-s-quic/ba-p/2683367
https://techcommunity.microsoft.com/t5/networking-blog/what-s-quic/ba-p/2683367
https://w3techs.com/technologies/details/ce-http3
https://w3techs.com/technologies/details/ce-http3
https://www.sandvine.com/blog/quic-is-quickly-taking-over
https://www.sandvine.com/blog/quic-is-quickly-taking-over
https://twitter.com/esesci/status/1630024112071491586
https://twitter.com/esesci/status/1630024112071491586
https://twitter.com/esesci/status/1630024112071491586
https://twitter.com/esesci/status/1630024112071491586
https://www.opentech.fund/news/a-quick-look-at-quic/
https://www.opentech.fund/news/a-quick-look-at-quic/
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/wikis/home
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/wikis/home
https://www.microsoft.com/en-us/security/blog/2021/03/26/securing-our-approach-to-domain-fronting-within-azure/
https://www.microsoft.com/en-us/security/blog/2021/03/26/securing-our-approach-to-domain-fronting-within-azure/
https://www.microsoft.com/en-us/security/blog/2021/03/26/securing-our-approach-to-domain-fronting-within-azure/
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://quiche.googlesource.com/quiche/
https://quiche.googlesource.com/quiche/
https://ripe80.ripe.net/presentations/35-nDPI_RIPE_052020.pdf
https://ripe80.ripe.net/presentations/35-nDPI_RIPE_052020.pdf
https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f/
https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f/
https://vasexperts.com/blog/functionality/from-tcp-to-quic/
https://vasexperts.com/blog/functionality/from-tcp-to-quic/
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://majestic.com/reports/majestic-million

[41] Cisco, “Umbrella popularity list,” 2023. [On-
line]. Available: http://s3-us-west-1.amazonaws.com/
umbrella-static/index.html

[42] J.-P. Smith, P. Mittal, and A. Perrig, “Website finger-
printing in the age of quic,” Proceedings on Privacy
Enhancing Technologies, vol. 2, pp. 48–69, 2021.

9

http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
http://s3-us-west-1.amazonaws.com/umbrella-static/index.html

	1 Introduction
	2 Background and Related Work
	2.1 QUIC
	2.2 Censorship circumvention

	3 Design and implementation
	3.1 Threat model
	3.2 System design
	3.3 Implementation

	4 Evaluation
	4.1 Feasibility evaluation against a proof-of-concept QUIC censor
	4.2 Performance evaluation

	5 Discussion
	5.1 Deployment challenges
	5.1.1 Observability of QUICstep
	5.1.2 Broad QUIC protocol blocking and monitoring
	5.1.3 Understanding QUIC connection migration support in the wild

	5.2 Other QUICstep-like systems

