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Abstract
Popular Chinese Input Method Editor (IME) keyboards almost uni-
versally feature “cloud-based” features that improve character pre-
diction when typing. Handling such sensitive data (i.e., keystrokes)
in transit demands security in transit. In this work, we perform a
comprehensive security measurement of the Chinese IME keyboard
ecosystem, investigating the network security of keystrokes sent in
transit by popular Chinese IME keyboards from nine vendors. We
studied the three most popular third-party keyboards, comprising
95.9% of the third-party keyboard market share in China, as well
as the default Chinese IME keyboards pre-installed on six popu-
lar Android mobile device manufacturers in China. We found that
the vast majority of IME keyboards utilize proprietary, non-TLS
network encryption protocols. Our measurement revealed critical
vulnerabilities in these encryption protocols from eight out of the
nine vendors in which network attackers could completely reveal
the contents of users’ keystrokes in transit. We estimate that up
to one billion users were affected by these vulnerabilities. Finally,
we provide recommendations to various stakeholders to limit the
harm from this existing set of vulnerabilities, as well as to prevent
future vulnerabilities of this kind.
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1 Introduction
Input Method Editors (IMEs) are a class of software keyboards that
make it possible to type languages with large character sets on a
smaller keyboard. As a logographic language, Chinese is especially
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difficult to input. In order to enable users to type Chinese, companies
like Sogou, Baidu, and iFlytek developed complex IME software
with predictive capabilities, which was often better than the default
software available on many operating systems. As a result, third-
party IME keyboards have become almost universal for Chinese
users. Chinese marketing firms estimate there were over 800 million
users of Chinese IMEs in 2022 [20].

IMEs also handle a particularly sensitive class of data; keystrokes
encompass everything that we input or enter into our devices,
including passwords, credit cards and other financial data, and
messages that are otherwise end-to-end encrypted. Simultaneously,
IMEs have becomemore technically sophisticated, many purporting
to incorporate “cloud-based” functionalities that can predict the cor-
rect character from context more accurately. For Chinese, enhanced
predictive capabilities can significantly improve typing speed. How-
ever, as many security researchers have previously pointed out,
“cloud-based” IMEs can essentially act as keyloggers [5, 40, 47, 50],
so it is clear that there is still a dire need for Chinese IMEs that are
both performant and privacy-preserving [18].

In contrast to previous work which concerns the first-party col-
lection of keystroke data [5], our work is the first to thoroughly
study the security of this traffic from third-party network eavesdrop-
pers. In this paper, we measure the transport security of “cloud-
based” IMEs from nine vendors: Baidu, Honor, Huawei, iFlytek,
OPPO, Samsung, Tencent, Vivo, and Xiaomi. Sogou, Baidu, and
iFlytek IMEs alone comprise almost 95.9% of the market share for
third-party IMEs in China [20, 31].

We conduct a systematic security measurement of 24 popular
IME keyboard applications across nine vendors, including fully
reverse-engineering their network security protocols and mapping
vulnerabilities to known classes of cryptographic flaws. To do this,
we designed and applied an analysis framework to study these apps’
transmission of users’ keystrokes. Our framework to systematically
measure the security of IME network traffic is as follows: (1) procure
the vendors’ apps, (2) capture their network traffic when typing, (3)
analyze their binaries to reverse engineer the traffic’s cryptography,
and (4) analyze the cryptography for weaknesses.

The most popular third-party Chinese IMEs functioned
as keyloggers that were broadly exploitable by any network
eavesdropper. Our analysis revealed critical vulnerabilities in IMEs
from eight out of the nine vendors — all but Huawei — in which
third-party network attackers could exploit those vulnerabilities to
completely reveal the contents of users’ keystrokes in transit. The
vulnerabilities we discovered are known classes of cryptographic
flaws, such as containing padding oracles, static key use, or key
and IV re-use.
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Figure 1: Monthly active users of the most popular IME soft-
ware we analyzed, and Chinese market share of the devices
whose pre-installed keyboards and IMEswe analyzed [20, 52].

The scope of these issues is massive. Baidu, Sogou, and iFlytek
IME keyboards comprise 95.9% of almost 800 million third-party
IME users, and each have hundreds of millions of monthly active
users, as demonstrated in Figure 1 [20]. In addition to the vulnera-
bilities we found on the Baidu, Sogou, and iFlytek IMEs, we found
that the default keyboards on devices from three manufacturers
(Honor, OPPO, and Xiaomi) were also vulnerable to our attacks,
with devices from Samsung and Vivo also bundled with a vulnera-
ble keyboard that was not used by default. In 2023, Honor, OPPO,
and Xiaomi alone comprised nearly 50% of the smartphone mar-
ket in China, also demonstrated in Figure 1 [52]. Across users of
third-party IMEs and users of the default keyboards on their mobile
devices, we estimate that up to one billion users could be affected
by these vulnerabilities.

We responsibly disclosed these vulnerabilities to all IME com-
panies and mobile device manufacturers. Tencent, iFlytek, OPPO,
and Samsung responded positively and worked to update their
IMEs’ protocols to use TLS, except for QQ Pinyin. Although Vivo,
Xiaomi, and Baidu were unresponsive, based on our testing, they
have also updated their keyboards after our initial disclosures. Un-
fortunately Baidu has not switched to TLS and instead switched to
a different proprietary protocol. Honor asked us to disclose to Baidu
instead, which we had already done. To summarize, we no longer
have working exploits against any products except Honor’s default
keyboard and Tencent’s QQ Pinyin. Baidu’s IME on other devices
continues to contain weaknesses in its cryptography. The full status
of vulnerabilities before and after our disclosures is summarized in
Table 1.

Our work joins others in presenting important evidence that
there still exists a larger, understudied class of apps sharing a prob-
lematic security property: the use of home-rolled cryptography. We
find that, despite the ecosystem’s overall trend toward TLS, mas-
sively popular cloud-based keyboard apps which handle extremely
sensitive data are almost universally members of this class and that
their encryption can be completely defeated by network eavesdrop-
pers. By analyzing apps in this class, our work helps to further
characterize the shape of this class by dispelling misconceptions

Android iOS Windows
Sogou ●→○ ○→○ ●→○

QQ ●→● ●→●
Baidu ◐→◐ ◐→◐ ●→◐
iFlytek ●→○ ○→○ ○→○

Pre-installed keyboard partner
Manufacturer Own Sogou Baidu iFlytek

Honor ●→●*
Huawei ○→○* ○→○†

OPPO ●→○ ●→◐*
Samsung ●→○ ○→○*† ●→◐

Vivo ○→○* ●→○
Xiaomi ●→○* ●→◐ ●→○

● working exploit to decrypt keystrokes in transit
◐ weaknesses present in cryptography implementation
○ no known issues
* default keyboard/IME on our test device
† we tested these forks of Sogou after our initial disclosure to

Tencent, but they may have been previously vulnerable
Table 1: Summary of vulnerabilities discovered in popu-
lar keyboards and in keyboards pre-installed on popular
Android-based mobile devices in China, before → after our
vulnerability disclosure.

such as that its members are not widely popular or not written by
large technology companies. Such an understanding is crucial so
that researchers can adequately prioritize and address this class of
apps’ unique security challenges.

2 Background
Compared to typing alphabetic languages whose small number of
letters can be represented uniquely by keys, typing logographic
languages such as Chinese is more difficult. Chinese has tens of
thousands of characters used in varying frequencies, many of which
are homophones and, in speech, are only distinguishable by con-
text. The necessity for predictive capabilities therefore arose much
earlier in Chinese input than for alphabetic language input, even as
early as typewriter usage [37]. Chinese IMEs with better predictive
capabilities can dramatically improve one’s typing speed. Nowa-
days, there are different competing standards for predictive digital
Chinese character input, including phonetic inputs like Pinyin (the
most popular in mainland China [20]) and Zhuyin, and radical or
stroke-based inputs like Cangjie or Wubi. Modern input methods
also support handwriting or voice recognition.

As IME apps’ predictive input capabilities have become more
sophisticated, they have also become universally popular. Market
reports estimate there are up to 800 million users of third-party
Chinese IME keyboards, with the major players being Sogou, Baidu,
and iFlytek comprising 95.9% of the total market share [20]. In ad-
dition, all the major mobile device manufacturers have developed
their own IMEs or have partnered with some of the above three
companies to provide predictive input capabilities by default on
their devices. In this work, we study the top three third-party Chi-
nese IME apps across Android, iOS, and Windows, as well as the
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pre-installed IMEs on the most popular Android phones in China,
as demonstrated in Figure 1.

2.1 Privacy risks of Chinese IMEs
Awareness of the potential security and privacy risks associated
with these apps has grown. Some researchers have expressed con-
cern over companies handling sensitive keystroke data and have
made attempts to ameliorate the risk of the cloud server being
able to record what users type. In 2013, the Japanese government
published concerns it had with privacy regarding the Baidu IME,
particularly the cloud input function [40]. Others have also been
concerned with surveillance via other “cloud-based” IMEs, like
iFlytek’s voice input [19]. While there has been a push to develop
privacy-aware, cloud-based IMEs that would keep user data secret,
they are not widely used [21].

In 2015, Chen et al. proposed and evaluated a system to identify
and prevent keystroke leakages in IME traffic, revealing that at least
one IME was transmitting sensitive data without encrypting it at
all [5]. Another security report in the same year showed that the
most popular IME at the time, Sogou, was sending users’ device
identifiers in the clear [28].

Although there is an abundance of work covering the privacy or
surveillance risk posed by IME providers’ collection of keystrokes,
ours is the first work to thoroughly examine the security of this
data in transit from third-party network eavesdroppers.

2.2 Transport security and Chinese apps
Third-party network adversaries can leverage vulnerabilities in
transport security to compromise user privacy at very large scales.
Most work studying the transport security of network traffic has
historically studied vulnerabilities in SSL or TLS [26, 35]. In 2018,
Böck et al. describes and measures the practical mass-exploitability
of Bleichenbacher oracles, a known vulnerability, in particular ci-
phersuites used by SSL or TLS [4].

More related to our work is the 2013 study of Egele et al. [11]
who systematically analyzed Google Play Store apps for common
cryptographic flaws, finding that hard-coded symmetric keys to be
the second most common flaw encountered. While the ecosystem
has improved in the intervening 11 years, our study shows that
such flaws affect even apps developed by large technology compa-
nies with hundreds of millions of users. Acar et al.[1] investigated
whether low-level cryptographic APIs are too complicated for devel-
opers to use, finding that experienced python developers commonly
could not reconstruct secure cryptographic systems even using of-
ficial documentation. Even if developers use TLS, researchers have
measured multiple pitfalls [14, 38, 39] in how developers interact
with its higher level APIs in practice.

The broad security impact of these works inspired us to study
the traffic encryption employed by Chinese IMEs, which were espe-
cially interesting since they were largely not using SSL/TLS. Early
work from 2015 noted the existence of proprietary network pro-
tocols used by Chinese apps, but did not study them in detail [5],
or has studied apps individually, such as with Chinese-developed
Zoom [33]. Notably, a 2015–2016 series of reports found extensive
flaws in the network cryptography applied by Chinese browsers

to data which they “phone home” [6, 22–25]. Our work shows that
such flaws exist in popular apps in 2023.

While our work shows how ineffective, proprietary cryptog-
raphy exposes users’ keystrokes, other work has demonstrated
how users’ typing can be revealed via side-channel attacks. Song
et al. [45] demonstrated how, with training data collected from a
user, the same user’s ssh keystrokes, including password contents,
can be inferred by the keystrokes’ timing and via other network
side channels. Bhanu [3] has shown that certain features of net-
work keystroke data can be inferred, such as the language a user
is typing, without any training data specific to that user. While
research has worked toward ameliorating timing side channels in
user typing by faking keystrokes [43], such methods are generally
not deployed and would require, for network-based apps, increased
network utilization.

While keystroke exfiltration via side-channels is a concerning
security threat, our primary threat model is a network adversary
interested in performing precise and scalable mass surveillance of
individuals’ keystrokes. We are especially interested in this threat
model because similar vulnerabilities from Chinese applications
have been targets for mass exploitation, expressly for the purpose
of mass surveillance by government agencies. While many govern-
ments may possess sophisticated mass surveillance capabilities, the
Snowden revelations gave us unique insight into the capabilities
of the United States National Security Agency (NSA) and more
broadly the Five Eyes. The revelations disclosed, among other pro-
grams, an NSA program called XKEYSCORE for collecting and
searching Internet data in realtime across the globe. Leaked slides
describing the program specifically reveal only a few examples of
XKEYSCORE plugins. However, one was a plugin that was written
by a Five Eyes team to take advantage of vulnerabilities in the net-
work cryptography of Chinese-developed UC Browser to enable
the Five Eyes to collect device identifiers, SIM card identifiers, and
account information pertaining to UC Browser users [24, 48]. Given
the enormous intelligence value of knowing what users are typing,
we can conclude that not only do the NSA and more broadly the
Five Eyes have the capabilities to mass exploit the vulnerabilities
we found but also the strong motivation to exploit them. This is
generally true for other governments as well.

In this work, we design and apply a framework for systemat-
ically analyzing the security of the network encryption used to
protect keystroke traffic between Chinese IMEs and their cloud
servers. Ours is the first to measure the security of the proprietary
encryption protocols deployed by IME vendors to protect keystroke
traffic.

2.3 Threat model
As we are studying the security of data in transit, our threat model
concerns third-party network attackers and not the first-party col-
lection of keystroke data by the IME provider. The primary adver-
sary we consider is a network adversary interested in performing
precise and scalable mass surveillance of individuals’ keystrokes, as
with the Five Eyes’ XKEYSCORE UCWeb plugin, which exploited
weak network cryptography in a Chinese application for the express
purpose of mass surveillance [24, 48].
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More specifically, our threat model includes a passive network
adversary that can monitor network packets and an active network
adversary that attacks messages sent between an IME client and
server. Either adversary also has access to a copy of the client soft-
ware, but the server is a black box. In the case of a passive network
adversary, they can monitor and collect any number of messages
that are sent between a user’s IME and the IME’s cloud server.
Additionally, the passive network adversary can send messages
to the server but does not necessarily have to be an active MITM
or spoof messages from the user in a layer 3 sense. In the case of
an active network adversary, the adversary sits on the network
path between the client and server and can block, alter, resend, or
otherwise manipulate any messages. The goal of all adversaries is
firstly to decrypt any of the ongoing messages between the client
and server or altering messages between the client and server to
change what the client sees. In the absence of complete decryption,
the adversary is still interested in learning information about the
client and server’s communication or successfully altering their
communications.

Aswementioned in the previous section, prior work has explored
keystroke exfiltration via side-channels and sophisticated traffic
analysis in other contexts. While this form of keystroke exfiltration
is an increasingly concerning security threat, we consider these ca-
pabilities beyond the scope of our primary adversary. These attacks
do not require the adversary to compile training data on a targeted
user or in any other capacity, and do not require the adversary to
accept probabilistic errors, both in failing to recover keystrokes or
recovering incorrect keystrokes. It is important to evaluate both
the security of these keystrokes in transit to defend against mass
surveillance, as well as the security of keystrokes against more
complex side-channel and fingerprinting attacks to defend against
more targeted surveillance. We focus on the former. As an analogy
to web browsing, it is critical to evaluate security transports like
Tor and TLS/HTTPS for vulnerabilities despite the existence and
efficacy of powerful website fingerprinting attacks [34].

3 Methods
We describe our methods for conducting a systematic network
security measurement of 24 IME keyboard applications across nine
vendors. In this process, we fully reverse-engineered their protocols
and mapped vulnerabilities to known classes of cryptographic flaws.

We analyzed the Android, and, if present, the iOS and Windows
versions of IMEs from the following vendors: Tencent, Baidu, iFly-
tek, Samsung, Huawei, Xiami, OPPO, Vivo, and Honor. The first
three — Tencent, Baidu, and iFlytek — are software developers of
IMEs whereas the remaining six — Samsung, Huawei, Xiami, OPPO,
Vivo, and Honor — are mobile device manufacturers who either
developed their own IMEs or include one or more of the former
three’s IMEs preinstalled on their mobile devices. We chose these
nine vendors as the former three develop the most popular third-
party IMEs, and the latter six companies comprise the bulk of the
mainland Chinese smartphone market [31, 52].

3.1 Analysis framework
For each of these vendors, we applied the following analysis frame-
work: we (1) procure the vendors’ apps, (2) capture their network

traffic when typing, (3) analyze their binaries to reverse engineer
the traffic’s cryptography, and (4) analyze their cryptography for
weaknesses.

3.1.1 Procuring the vendor’s IME applications. To procure the apps
that we analyzed, between August and November 2023, we down-
loaded the latest versions of them from their product websites, the
Apple App Store, or, in the case of the apps developed or bundled
by mobile device manufacturers, by procuring a mobile device that
had the app preinstalled. The devices we obtained were intended
for the mainland Chinese market, and, when device manufacturers
had two editions of their device, a Chinese edition and a global
edition, we analyzed the Chinese edition. When analyzing apps
that we obtained from a mobile device, we ensured that the device’s
apps and operating system were fully updated before beginning
analysis of its apps.

3.1.2 Capturing network traffic during character input. After procur-
ing each app, to capture its network traffic, we first installed it and
enabled the pinyin input if it was not already enabled by default.
The keyboards we analyzed generally prompted users to enable
cloud functionality after installation or on first use. In such cases,
we answered such prompts in the affirmative or otherwise enabled
cloud functionality through the mobile device’s or app’s settings.
We then typed with the apps, using Wireshark and mitmproxy to
capture network traffic and to look for any traffic that was consis-
tently sent upon every keystroke.

3.1.3 Analyzing the binary and dynamic instrumentation. After cap-
turing an app’s network traffic, to reverse engineer the cryptogra-
phy applied to the network traffic, we applied standard static and
dynamic reverse-engineering methods [2, 7, 8, 32]. We used jadx
to statically analyze and decompile Dalvik bytecode and both IDA
Pro and Ghidra to statically analyze and decompile native machine
code. We used frida to dynamically analyze the Android and iOS
versions and IDA Pro to dynamically analyze the Windows version.

3.1.4 Cryptography analysis. Finally, after reverse engineering the
network traffic’s cryptography, we analyzed it for weaknesses. We
looked for violations of cryptographic fundamentals, such as a lack
of asymmetric cryptography, secrets generated with predictable
seeds, and the use of ciphers with known weaknesses. When appli-
cable, we also evaluated the cryptography for oracles and oracle-
related attacks. Whenever possible, we authored proof-of-concept
attacks that fully decrypt captured network traffic. Otherwise, we
reported any flaws as weaknesses in the cryptography that we were
unable to completely exploit.

In this work we are motivated by compelling app developers to
switch from home-rolled cryptography to TLS. Thus, for purposes
of this report we consider any use of a standard TLS implementation
to be sufficient cryptography. While vulnerabilities may yet exist
in TLS implementations and in how they are used, our work is
primarily concerned with discovering flaws in apps which do not
use TLS and which implement their own cryptography.

We note that, as neither Apple’s nor Google’s keyboards have
a feature to transmit keystrokes to cloud servers for cloud-based
recommendations, we did (and could) not analyze these keyboards
for the security of this feature. However, we observed that none
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of the mobile devices that we analyzed included Google’s key-
board, Gboard, preinstalled, either. This finding likely results from
Google’s exit from China due to failing to comply with China’s
censorship requirements.

3.2 Ethical considerations
We did not use any actively used devices for this project, using only
devices which were purchased for the express purpose of research
and emulators. We only collected and analyzed apps and network
data on these test devices while they were operated by researchers.

3.2.1 Coordinated disclosures and timeline. We undertook an ex-
tensive coordinated vulnerability disclosure with eight different
vendors: Tencent, Baidu, iFlytek, Samsung, Honor, OPPO, Vivo,
and Xiaomi1. These vulnerabilities are severe and, if not fully fixed,
could cause privacy harm to billions of users.

In our follow-up analyses, we considered the cryptography suffi-
ciently resolved if it used a version of TLS provided by the operating
system or by a well-known provider. If the vendor continued us-
ing proprietary cryptography but made improvements to it, we
evaluated the improved cryptography for weaknesses.

iFlytek, OPPO, and Samsung responded positively and worked
to update their IMEs’ protocols to use TLS. Tencent did the same
for Sogou IME, but not for QQ Pinyin. Honor responded, but asked
us to disclose to and coordinate with Baidu instead, which we had
already attempted. Vivo, Xiaomi, and Baidu were unresponsive, but,
based on our testing, they have all updated their keyboards after our
initial disclosures. Unfortunately Baidu has not switched to TLS and
instead switched to an upgraded proprietary protocol, BAIDUv4.
Although this protocol is not as trivially broken as the previous
Baidu protocols, it still contains many weaknesses compared to
TLS, which we detail in Section 4.2.2.

The default keyboard on our Honor device remains vulnerable
to these issues. We also note that our Honor device does not have a
straightforward update mechanism for their default keyboard, as it
is not possible to receive updates for it via the Honor App Market.

Regarding QQ Pinyin, Tencent indicated that “with the excep-
tion of end-of-life products, we aim to finalize the upgrade for all
active products to transmit EncryptWall requests via HTTPS by the
conclusion of Q1 [2024]”, but, as of April 1, 2024, though Sogou IME
has been updated, we have not seen fixes to QQ Pinyin. Tencent
may consider QQ Pinyin end-of-life as it has not received updates
since 2020, although it is still available for download.

In summary, we no longer have working exploits against any
products except Honor’s default IME and Tencent’s QQ Pinyin.
Baidu’s IMEs on other devices continue to contain weaknesses
in their cryptography. The full status of vulnerabilities after our
disclosures, as of April 1, 2024, is summarized in Table 1. As it is long
past the disclosure windows from our initial reports in October and
November of 2023, we hope widely publicizing these vulnerabilities
will prevent further privacy harm from befalling existing users of
these applications.

1For the full disclosure timeline for each vendor, see https://citizenlab.ca/
2024/04/vulnerabilities-across-keyboard-apps-reveal-keystrokes-to-network-
eavesdroppers/#disclosure-timelines.

4 Results
Among the nine vendors whose apps we analyzed, there was only
one vendor, Huawei, in whose apps we could not find security
issues regarding the transmission of users’ keystrokes. For each
of the remaining eight vendors, in at least one of their apps we
discovered a vulnerability in which keystrokes could be completely
revealed by a network eavesdropper (see Tables 2 and 3 for details).

The ease with which the keystrokes in these apps could be re-
vealed varied. In one app, Samsung Keyboard, we found that the app
performed no encryption whatsoever. Some apps appeared to inter-
nally use Sogou’s cloud functionality. Most vulnerable apps failed to
even use asymmetric cryptography, relying solely on home-rolled
symmetric encryption to protect users’ keystrokes.

In procuring the apps, we found that each mobile device man-
ufacturer bundled a variant of at least one of Sogou’s, Baidu’s, or
iFlytek’s keyboards, sometimes alongside the manufacturer’s own
IME. Due to code and API licensing, we found that the 24 apps in Ta-
ble 2 that do not use TLS, used one of six unique network encryption
schemes, which we refer to as EncryptWall-And, EncryptWall-Win,
BAIDUv3-1, BAIDUv3-2, BAIDUv4, iFlytek-And. The first two are
subvariants of the EncryptWall scheme we identified in Sogou-
related keyboards, and then we identified the three BAIDU schemes
in different Baidu-related keyboards. iFlytek-And was used by all
the Android-based iFlytek variants we studied. Table 3 summa-
rizes each encryption protocol as well as the key vulnerabilities we
identified in each protocol.

In the following sections, we describe each of the protocols and
the core vulnerabilities we identified.

4.1 EncryptWall
Sogou IME’s encryption system is internally referred to as Encrypt-
Wall. We found that the Windows, iOS, and Android implementa-
tions of EncryptWall each differ slightly, so we name these pro-
tocols EncryptWall-And, EncryptWall-iOS, and EncryptWall-Win,
respectively. In addition to Sogou-branded keyboards, QQ Pinyin
also uses EncryptWall-And and EncryptWall-Win to encrypt to So-
gou endpoints.

EncryptWall-And and EncryptWall-Win were both vulnerable
to variants of a CBC padding oracle attack [49] that allowed us
to completely recover encrypted keystrokes. In the case of the
Android version, we were also able to recover the second halves
of the symmetric encryption keys used to encrypt traffic. We also
found vulnerabilities affecting EncryptWall-iOS, but we are not
presently aware of methods to exploit them since the requests from
the iOS version were wrapped in TLS.

Since there were differences in the EncryptWall implementation
across the three operating system platforms that we analyzed, we
first overview the common system before detailing the specific
implementations of it in the following sections.

4.1.1 Overview. When analyzing Sogou IME’s network traffic, we
found that it communicates users’ keystrokes via plain HTTP POST
requests to Sogou API endpoints which are referred to internally as
“EncryptWall” endpoints. These plain HTTP requests do however
contain an encrypted payload.We call the outer, plainHTTP request
the EncryptWall request and the single tunneled HTTP request each
EncryptWall request encapsulates the tunneled request. We also
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Vendor Program name File/package name Version analyzed Platform Protocol used As of 2024-04-01

Tencent Sogou IME SogouInput_11.20_android_sweb.apk 11.20 Android EncryptWall-And TLS
Tencent Sogou IME com.sogou.sogouinput 11.21 iOS TLS TLS
Tencent Sogou IME sogou_pinyin_guanwang_13.4e_1111.exe 13.4 Windows EncryptWall-Win TLS
Tencent QQ IME com.tencent.qqpinyin 8.6.3 Android EncryptWall-And EncryptWall-And
Tencent QQ IME QQPinyin_Setup_6.6.6304.400.exe 6.6.6304.400 Windows EncryptWall-Win EncryptWall-Win
Baidu Baidu IME com.baidu.input 11.7.19.9 Android BAIDUv4 BAIDUv4
Baidu Baidu IME com.baidu.inputMethod 11.7.20 iOS BAIDUv4 BAIDUv4
Baidu Baidu IME BaiduPinyinSetup_6.0.3.44.exe 6.0.3.44 Windows BAIDUv3-2 BAIDUv4
iFlytek iFlytek IME com.iflytek.inputmethod 12.1.10 Android iFlytek-And TLS
iFlytek iFlytek IME com.iflytek.inputime 12.1.3338 iOS TLS TLS
iFlytek iFlytek IME iFlyIME_Setup_3.0.1734.exe 3.0.1734 Windows TLS TLS
Honor Baidu IME Honor Version com.baidu.input_hihonor 8.2.501.1 Android BAIDUv3-2 BAIDUv3-2
Huawei Celia IME com.huawei.ohos.inputmethod 1.0.19.333 Android TLS TLS
Huawei Sogou IME com.sohu.inputmethod.sogou 11.31 Android TLS* TLS
OPPO Sogou IME Custom Version com.sohu.inputmethod.sogouoem 8.32.0322.2305171502 Android EncryptWall-And TLS
OPPO Baidu IME Custom Version com.baidu.input_oppo 8.5.30.503 Android BAIDUv3-2 BAIDUv4
Samsung Samsung Keyboard com.samsung.android.honeyboard 5.6.10.26 Android No encryption TLS
Samsung Sogou IME Samsung Version com.sohu.inputmethod.sogou.samsung 10.32.38.202307281642 Android TLS* TLS
Samsung Baidu IME com.baidu.input 8.5.20.4 Android BAIDUv3-1 BAIDUv4
Vivo Jovi IME com.vivo.ai.ime 2.6.1.2305231 Android TLS TLS
Vivo Sogou IME Custom Version com.sohu.inputmethod.sogou.vivo 10.32.13023.2305191843 Android EncryptWall-And TLS
Xiaomi Sogou IME Xiaomi Version com.sohu.inputmethod.sogou.xiaomi 10.6.120.480 Android EncryptWall-And TLS
Xiaomi Baidu IME Xiaomi Version com.baidu.input_mi 10.6.120.480 Android BAIDUv3-2 BAIDUv4
Xiaomi iFlytek IME Xiaomi Version com.iflytek.inputmethod.miui 8.1.8014 Android iFlytek-And TLS

* Tested after our initial disclosure with Tencent Sogou, but may have been previously using EncryptWall-And.
Table 2: The 24 IMEs we tested and the network protocols they used to transmit keystrokes. We tested the most popular
third-party IMEs, as well as the IMEs that were pre-installed on 6 devices from popular Chinese device manufacturers.

Protocol Status Core vulnerability Mode Variation

EncryptWall-And Decryptable CBC padding oracle AES-CBC Splits key into two, uses fixed IV
EncryptWall-Win Decryptable CBC padding oracle AES-CBC
BAIDUv3-1 Passively decryptable Fixed key AES-ECB Additional permutations each AES round
BAIDUv3-2 Passively decryptable Fixed key AES-ECB Missing AES round
BAIDUv4 Not CPA-secure IV and key re-use AES-BCTR Uses home-rolled CTR mode
iFlytek-And Passively decryptable Key derived from timestamp DES-ECB

Table 3: Each of the proprietary cryptography protocols we identified in the 24 IMEs we studied, a summary of their encryption
mode, and the key vulnerabilities we found in each. In addition, EncryptWall-And and EncryptWall-Win use RSA to protect key
material in transit. BAIDUv4 uses static Diffie-Hellman.

observed that in addition to a tunneled payload each EncryptWall
request contains at least five HTTP form fields.

By analyzing Sogou IME’s binaries, we found that these five
HTTP form fields specify cryptographic parameters used to en-
crypt the tunneled request in addition to the encrypted tunneled
data. These form fields and the data they encode or encrypt are
summarized in Table 4.

Two form fields relate to specifying the key and initialization
vector (IV) used to encrypt other fields in the EncryptWall request.
pk is an RSA public key pinned to the application, and both 𝑘 and
IV are randomly generated for each request.

• "K": the base64 encoding of the encryption of a 256-bit
AES key 𝑘 with a hard-coded 1024-bit public RSA pk us-
ing PKCS#v1.5 padding.

• "V": the base64 encoding of a 128-bit IV used as an IV.

Three of the form fields "U", "G", and "P", are individually zlib
compressed, encrypted using 𝑘 and IV , and base64-encoded accord-
ing to the following pseudo-code:

𝐸wall (k, IV , data) = base64_encode(AES_cbc_encrypt(
zlib_compress(data,wbits=−15), 𝑘, IV ))

We found that the EncryptWall system is vulnerable to a CBC
padding oracle attack, a type of chosen ciphertext attack originally
published in 2002 [49] impacting block ciphers using cipher block
chaining (CBC) block cipher mode and PKCS#7 padding. Specifi-
cally, we found that a ciphertext sent in the "U" form field returns an
HTTP 400 status code when it contains incorrect padding, whereas,
when correctly padded, it returns either a 200 status or 500 status
code depending on whether the decrypted URL is a valid URL or
not, respectively. By performing a CBC padding oracle attack, this
padding oracle allows us to not only reveal the entire plaintexts
𝑝𝑢 , 𝑝𝑔 , and 𝑝𝑝 , since they are encrypted using the same 𝑘 and IV .
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Field EncryptWall-And EncryptWall-Win Underlying data purpose
K 𝐸RSA (pk, 𝑘) 𝐸RSA (pk, 𝑘) 𝑘 : 32-byte symmetric key
V IV 𝐸RSA (pk, IV ) IV : 16-byte initalization vector
U 𝐸 (𝑘, IV , 𝑝𝑢 ) 𝐸wall (𝑘, IV , 𝑝𝑢 ) 𝑝𝑢 : Tunneled URL
G 𝐸 (𝑘, IV , 𝑝𝑔) 𝐸wall (𝑘, IV , 𝑝𝑔) 𝑝𝑔 : GET params to 𝑝𝑢
P 𝐸 (𝑘, IV , 𝑝𝑝 ) 𝐸wall (𝑘, IV , 𝑝𝑝 ) 𝑝𝑝 : POST params to 𝑝𝑢
R 𝑘 ⊕ 𝑟 - 𝑟 : Second 32-byte key
S 𝑘 ⊕ 𝐸 (𝑟, IV 𝑓 , 𝑝𝑠 ) - 𝑝𝑠 : Sogou and device identifiers
E 𝑘 ⊕ 𝐸 (𝑟, IV 𝑓 , 𝑝𝑒 ) - 𝑝𝑒 : Various internal parameters
F 𝑘 ⊕ 𝐸 (𝑟, IV 𝑓 , 𝑝 𝑓 ) - 𝑝 𝑓 : Not set on version analyzed

Table 4: Overview of the HTTP POST form fields sent
by EncryptWall-And and EncryptWall-Win to http://v2.get.
sogou.com/q or http://get.sogou.com/q. These fields were all
base64-encoded. pk and IV 𝑓 are pinned to the application. 𝑘
and IV are generated per-request. 𝑟 is generated per-“session”
as it is cached in application memory.

Thus, by using this padding oracle we can decrypt the contents of
the entire EncryptWall request.

In the following sections, we adapt this attack for all variations
in the implementation of EncryptWall-And and EncryptWall-Win.
Although they do not presently appear exploitable, we also detail
defects in the EncryptWall system on iOS.

4.1.2 EncryptWall on Windows: EncryptWall-Win. When analyz-
ing the Windows binaries, we found that the EncryptWall system
deviated from the basic implementation described above in one
detail, namely that IV , instead of being public, was encrypted in the
same manner as 𝑘 , as demonstrated in Table 4. Due to this discrep-
ancy, IV is not immediately known, which is potentially problem-
atic for our attack for two reasons: first, in the CBC padding oracle
attack, the IV must be known in order to decrypt the first block
of plaintext. Second, since the data 𝑝𝑢 , 𝑝𝑔 , and 𝑝𝑝 are compressed
before being encrypted, the first block of plaintext is important for
decompressing the remaining blocks.

However, we developed a method to recover IV that exploits the
fact that IV is reused to encrypt multiple plaintexts. Specifically,
since the URL 𝑝𝑢 is easily predictable and is ever only one of a
small number of possible endpoints, we are able to recover IV by
performing a CBC padding oracle attack on the first ciphertext
block of "U", assuming an all zero IV. The result of this attack will
be 𝑝𝑢1 ⊕ IV . Since 𝑝𝑢1 , the first block of 𝑝𝑢 , is predictable, we recover
IV . Then, we can perform the CBC padding oracle attack on "G"
and "P" as usual.

As one example of the kind of transmitted data vulnerable to
this attack, we found that for EncryptWall requests sent to “http:
//get.sogou.com/q”, when 𝑝𝑢 was “http://master-proxy.shouji.sogou.
com/swc.php”, 𝑝𝑔 contained version information pertaining to So-
gou IME’s software, and 𝑝𝑝 was a protobuf buffer containing the
keystrokes that had been recently typed in, as shown in Figure 2.

Since these transmissions are vulnerable to our attack, the key-
strokes of Sogou Input Method users can be decrypted by a network
eavesdropper, informing the eavesdropper of what users are typing
as they type.

4.1.3 EncryptWall on Android: EncryptWall-And. When analyzing
the Android version’s network traffic, we found that the Android

1 1 {
2 1: "com.android.messaging"
3 2: "11.20"
4 4: 1
5 6: "android_sweb"
6 8: "Google"
7 10: "android_sweb"
8 11: "11.20"
9 14: "30"
10 18: "-1"
11 22: "5682b3aa4fa7bd40d776c93a35a77c6d"
12 }
13 2 {
14 1: 0xbff0000000000000
15 2: 0xbff0000000000000
16 3: "-1"
17 }
18 3: 1
19 4: "canyoureadthis"
20 11 {
21 1: "onekeyimageenable"
22 2: "1"
23 }

Figure 2: Example recovered protobuf data from Sogou IME
onAndroid; line 19 contains the typed text and line 2 contains
the package name of the app in which the text is being typed.

version adopts the basic implementation of EncryptWall but with
the inclusion of four additional form fields: "R", "S", "E", and "F",
which are also depicted in Table 4. By analyzing its binaries, we
found that the field "R" transmits another 32-byte key 𝑟 . Notably,
however, each byte of 𝑟 is randomly chosen from the 36-character
set of ASCII uppercase letters and numbers. Therefore, instead of
log2 25632 = 256 bits of entropy, 𝑟 only has log2 3632 < 166 bits of
entropy. Furthermore, unlike 𝑘 , 𝑟 is not generated randomly for
each request and is only generated once per application lifetime as
it is cached in C static memory. The field "R" is then transmitted
as the base64 encoding of 𝑘 ⊕ 𝑟 . Note that due to this transmission,
𝑘’s entropy is also reduced to log2 3632 < 166 bits of entropy. The
parameters 𝑘 and 𝑟 are used to encode "S", "E", and "F" according
to the following pseudo-code:

𝐸SEF (data) = base64_encode(𝑘 ⊕ AES_cbc_encrypt(
data, 𝑟 , "EscowDorisCarlos"))

Note that unlike the typical 𝐸wall () function, 𝐸SEF () features
a hard-coded fixed IV IV 𝑓 = "EscowDorisCarlos" and no zlib
compression. Additionally, although 𝐸SEF () uses 𝑟 instead of 𝑘 as
an AES key, 𝑘 is additionally XORed with the result of the AES
encryption. Each of the plaintexts 𝑝𝑠 , 𝑝𝑒 , and 𝑝 𝑓 are individually
encrypted and encoded according to the 𝐸SEF () function.

We were able to apply the CBC padding oracle attack, using
Sogou’s processing of the "E" form field, with the following two
accommodations:

First, since the key 𝑘 is 32 bytes but AES blocks are 16 bytes,
when the output of the AES block cipher is XORed with 𝑘 , we can
think of the output being XORed with two keys 𝑘1 and 𝑘2, where 𝑘1
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Ciphertext c1

Initialization Vector (IV)

block cipher
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Plaintext p2

Ciphertext c2

block cipher
decryption

Plaintext p3

Ciphertext c3

Figure 3: Amodified version ofCBCused by EncryptWall-And
in which a 32-byte key 𝑘 = 𝑘1 ∥ 𝑘2 composed of two 16-byte
keys 𝑘1 and 𝑘2 is XORed with ciphertext blocks before being
decrypted by the block cipher such that 𝑘1 is XORed with
odd-numbered blocks (1, 3, . . . ) and 𝑘2 is XORed with even-
numbered blocks (2, 4, . . . ).

is XORed with odd-numbered blocks (1, 3, . . . ) and 𝑘2 is XORed with
even-numbered blocks (2, 4, . . . ), as demonstrated in Figure 3. Thus,
when performing the CBC padding oracle attack, we had to ensure
that the block that we were attacking was in an even-numbered
position if it was originally even-numbered or in an odd-numbered
position if it was originally odd-numbered. In other words, we had
to preserve the parity of the block’s position.

Second, since IV 𝑓 is hard-coded, we cannot modify it and thus,
similar to the Windows version, the CBC padding oracle attack
cannot recover the first block of plaintext 𝑝1 without an adaptation.
Namely, we found that 𝑝𝑠1 , 𝑝𝑒1 , and 𝑝 𝑓1 were still recoverable via
the following procedure:

(1) We treat the fixed IV 𝑓 as a ciphertext block 𝑐0 = IV 𝑓 pre-
ceding the first ciphertext block 𝑐1 and send it to the oracle.
Since 𝑐1 must be in an odd-numbered position, we ensure
that 𝑐0 is in an even-numbered position. Thus, during the
attack, the oracle uses 𝑐0 ⊕ 𝑘2 when decrypting 𝑐1.

(2) Decryption of 𝑐1 produces 𝑝′1 = 𝑝1 ⊕ IV 𝑓 ⊕ 𝑐0 ⊕ 𝑘2.
(3) Since (per step 1) 𝑐0 = IV 𝑓 , 𝑝′1 is merely 𝑝1 ⊕ 𝑘2. Therefore,

we can recover 𝑝𝑠1 ⊕ 𝑘2, 𝑝𝑒1 ⊕ 𝑘2, and 𝑝 𝑓1 ⊕ 𝑘2.
(4) Moreover, the value of 𝑝𝑠1 was highly predictable. Namely, it

encoded the version of Sogou being used, which was already
transmitted in the clear as an HTTP header of the Encrypt-
Wall request. Thus, since we have recovered 𝑝𝑠1 ⊕ 𝑘2 and 𝑝𝑠1
is known, we have therefore recovered 𝑘2.

(5) Once we know 𝑘2, we have also recovered 𝑝𝑒1 and 𝑝 𝑓1 .
Additionally, we can now also recover the second half of 𝑟 , 𝑟2.

Since 𝑟 is reused for multiple EncryptWall requests, this can be used
to more easily recover 𝑘2 in subsequent requests. Since the form
field "R" encodes 𝑘 ⊕𝑟 we can recover 𝑟2 by XORing the second half
of the "R" field’s encoded contents with 𝑘2. Once 𝑟2 is recovered,
since 𝑟 , unlike 𝑘 , is generated once per application lifetime, we
can more easily recover 𝑘2 in future requests by simply XORing
the second half of "R" with 𝑟2, making the attack even easier to
perform in the future. Furthermore, this reduces the entropy of 𝑟 ,
and thus, also 𝑘 , to log2 3616 < 83 bits.

As one example of the kind of transmitted data vulnerable to this
attack, we observed that for EncryptWall requests sent to “http://v2.
get.sogou.com/q”, when 𝑝𝑢 was “http://swc.pinyin.sogou.com/swc.
php”, 𝑝𝑝 was a protobuf buffer containing all of the text currently

present in the input field in which the user is currently typing as
well as the package name of the app in which the text was being
typed. These transmissions occurred when pressing the magnifying
glass icon, and we believe that these transmissions are related to
an image search feature in which typed text is searched against a
database of animations and memes which can be inserted into the
typed message.

As one other example of the kind of transmitted data vulnera-
ble to this attack, we observed that for EncryptWall requests sent
to “http://v2.get.sogou.com/q”, when 𝑝𝑢 was “http://update.ping.
android.shouji.sogou.com/update.gif”, 𝑝𝑝 was a query string con-
taining a list of every app installed on the Android device. We
are unaware of what feature this data transmission is intended to
implement. While one can imagine knowing which app a user is
presently using may be useful for providing better typing sugges-
tions in that app, it is difficult to imagine how knowing every app
that a user has installed can provide better typing suggestions, even
apps which users do not intend to use with Sogou IME.

4.1.4 EncryptWall on iOS. The iOS version which we analyzed had
no major deviations from the basic EncryptWall implementation.
However, all EncryptWall requests that we observed transmitted by
the iOS version which we analyzed were transmitted over HTTPS,
and thus were additionally encrypted using TLS. However, we note
that without the additional protection of HTTPS, the iOS version
would have been the most vulnerable due to the existence of an
additional defect in the implementation of EncryptWall.

Before randomly generating 𝑘 and again before randomly gen-
erating the IV the random number generator is seeded with the
current time as seconds since the Unix epoch, rounded down to a
whole second. There are two consequences to this behavior: first,
the only information needed to derive 𝑘 is the time which the re-
quest was sent, which any network eavesdropper would be able
to easily record. Second, since the random number generator is
re-seeded before generating IV with what will almost always be the
same time in seconds after rounding, IV is almost always the first
128 bits of 𝑘 . Since IV is public, all EncryptWall messages reveal
the first half of 𝑘 in IV , despite the fact that 𝑘 is encrypted with the
public RSA key pk.

4.2 BAIDUv3 and BAIDUv4
In our network traffic analysis, we discovered that all versions of
Baidu’s protocols transmit keystrokes via UDP packets. We found
that Baidu IMEs are generally split between two major protocol
variations, which differ in both structure and cryptography. Most
notably, in structure they can be differentiated by the first two
bytes. One variation’s UDP payload always begins with 0x03 0x01,
and the other’s UDP payload begins with the bytes 0x04 0x00. We
henceforth refer to these protocols as the BAIDUv3 and BAIDUv4
protocols, respectively.

Additionally, we identified two minor variations of BAIDUv3,
which we refer to as BAIDUv3-1 and BAIDUv3-2. Both BAIDUv3-1
and BAIDUv3-2 contain a vulnerability that allows network eaves-
droppers to decrypt network transmissions. We also found that
BAIDUv4 is not CPA-secure, and thus has severe privacy weak-
nesses. However, we were unable to exploit BAIDUv4 to reveal
users’ keystrokes completely.
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03 01 00 00 00 00 8E FF BB D0 01 00

02 01 08 32 00 01 00 00 9D 8D CA 00 00 00 00 00 

Version

03 01 8E FF BB D0

XOR checksum of rest

01 00

Length of rest

Minor version Compression flags CRC checksum of yellow*

71 F6 71 AF 79 CC 96 93 DB 21 67 82 BE 26 5F D6

km encrypted with kf

plaintext encrypted with km

8E 55 2E 0E FA 4A 4A 2E 18 05 4C 16 B0 82 69 90

2E 90 0C 92 38 7A B8 8B 11 7A 2B 14 8F F6 9C EF
...

Figure 4: Wire format and sample payload for BAIDUv3-2.
*Note that the CRC checksum is calculated on the yellow
portion with the checksum itself taken to be all 00 bytes.

1 [...]
2 2 {
3 1: "nihaonihao"
4 }
5 3 {
6 1: 28
7 2: 10
8 3: 1240
9 4: 2662
10 5: 5
11 }
12 4 {
13 1: "47148455BDAEBA8A253ACBCC1CA40B1B%7CV7JTLNPID"
14 2: "p-a1-5-105|PHK110|720"
15 3: "8.5.30.503"
16 4: "com.android.mms"
17 5: "1021078a"
18 }
19 [...]

Figure 5: Example excerpt of recovered protobuf data from
Baidu IME Custom Version pre-installed on an OPPO de-
vice, encrypted using BAIDUv3-2, including what we had
typed (“nihaonihao”) and the app into which it was typed
(“com.android.mms”).

4.2.1 BAIDUv3 Encryption. BAIDUv3 encrypts keystrokes using
a modified version of AES. However, we found in our work two
different variations of AES used; to differentiate between the pro-
tocols which use different versions of AES, we refer to them as
BAIDUv3-1 and BAIDUv3-2. These two variations also have slightly
different wire formats.

When encrypting, BAIDUv3-1’s key expansion is like that of
standard AES, except, on each but the first subkey, the order of
the subkey’s bytes are additionally permuted. Furthermore, on the
encryption of each block, the bytes of the block are additionally
permuted in two locations, once near the beginning of the block’s
encryption immediately after the block has been XOR’d by the

first subkey and again near the end of the block’s encryption im-
mediately before S-box substitution. Aside from complicating our
analysis, we are not aware of these modifications altering the secu-
rity properties of AES, and we have developed an implementation
of this algorithm to both encrypt and decrypt messages given a
plaintext or ciphertext and a key.

BAIDUv3-2 does not contain the same modifications to AES as
BAIDUv3-1. Normally, AES when used with a 128-bit key performs
10 rounds of encryption on each block. However, we found that
BAIDUv3-2 uses only 9 rounds but is otherwise equivalent to AES
encryption with a 128-bit key.

Otherwise, both BAIDUv3-1 and BAIDUv3-2 generally encrypt
in the same way. In both, the following key 𝑘𝑓 is derived according
to a fixed function:

def derive_key ():
key = []
x = 0
for i in range (16):

b = ~i ^ ((i + 11) * (x >> (i & 3)))
key.append(b & 0xff)
x += 1937

return bytes(key)

Note that the function takes no input nor references any external
state and thus always generates the same fixed, 128-bit key 𝑘𝑓 =
〈ff 9e d5 48 07 5a 10 e4 ef 06 c7 2e a7 a2 f2 36〉.

To encrypt a protobuf-serialized message, the BAIDUv3 protocol
first compresses it, forming a compressed buffer. The 32-bit, little-
endian length of this compressed message is then prepended to the
compressed buffer, forming the plaintext. A randomly generated
16-byte key 𝑘𝑚 is used to encrypt the plaintext using AES in ECB
mode. The resulting ciphertext is stored in bytes 44 until the end of
the final UDP payload. Key 𝑘𝑓 is used to encrypt 𝑘𝑚 using AES in
ECB mode. The resulting encrypted key is stored in bytes 28 until
44 of the final UDP payload (see Figure 4 for an illustration).

Even with modifications, both BAIDUv3-1 and BAIDUv3-2 are
ultimately symmetric encryption schemes with no asymmetric fea-
tures. Therefore, the same key used to encrypt a message can also
be used to decrypt it. Since 𝑘𝑓 is fixed, any network eavesdrop-
per with knowledge of 𝑘𝑓 can decrypt 𝑘𝑚 and thus can decrypt
the plaintext contents of each message encrypted in the manner
described above. These encrypted messages included our typed
keystrokes as well as the name of the application into which we
were typing them (see Figure 5 for an example payload).

4.2.2 BAIDUv4. The upgraded BAIDUv4 protocol uses elliptic-
curve Diffie-Hellman with a pinned server public key (𝑝𝑘𝑠 ) to es-
tablish a shared secret key for use in yet another modified version
of AES.

Upon opening the keyboard, before the first outgoing BAIDUv4
protocol message is sent, the application randomly generates a
client Curve25519 public-private key pair (𝑝𝑘𝑐 , 𝑠𝑘𝑐 ). Then, a Diffie-
Hellman shared secret 𝑘 is generated using 𝑠𝑘𝑐 and a pinned public
key 𝑝𝑘𝑠 . To send a message with plaintext 𝑃 , the application reuses
the first 16 bytes of 𝑝𝑘𝑐 as the initialization vector (IV) for symmetric
encryption, and 𝑘 is used as the symmetric encryption key. The
resulting symmetric encryption of 𝑃 is then sent along with 𝑝𝑘𝑐
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04 00

CRC

D5 D7 8E C7 0C 58 69 B4 2A 0A

last 8 bytes of public ed25519 key

 protobuf field: plaintext encrypted with km

Version

18 16

 protobuf field: int

6A 18 31 F9 00 8F 4B 1B DF 53 67 F8 8F 5D E5 94

EA 63 18 02 DF 9E 54 87 02 77                  

 protobuf field: first 24 bytes of public ed25519 key

2A F4 01 15 80 FB 67 7F F3 52 75 8F BF 44 02 52 

12 DC 86 B0 4D D8 FC 22 75 DD 2B E3 C1 4B 30 99

...

protobuf

Figure 6: Wire format and sample payload for BAIDUv4.

Initialization vector Initialization vector + n – 1 Initialization vector + n

Encrypt

Ciphertext block

Key

Encrypt

Ciphertext block partly encrypted twice

Key

Encrypt

Key

Stolen ciphertext || PlaintextPlaintext block

Last ciphertext block

Baidu’s modified CTR

Plaintext block

Figure 7: Illustration of BCTRmode encryption scheme used
by BAIDUv4 on Android and iOS.

to the server (see Figure 6 for an illustration). The server can then
obtain the same Diffie-Hellman shared secret 𝑘 from 𝑝𝑘𝑐 and 𝑠𝑘𝑠 ,
the private key corresponding to 𝑝𝑘𝑠 , to decrypt the ciphertext.

The BAIDUv4 protocol symmetrically encrypts data using a
modified version of AES from BAIDUv3-1 and BAIDUv3-2. Com-
pared to ordinary AES, BAIDUv4 uses a built-in cipher mode and
padding. This cipher mode mixes bytes differently and uses a modi-
fied counter (CTR) mode which we call Baidu CTR (BCTR) mode,
illustrated in Figure 7.

Generally speaking, any CTR ciphermode involves combining an
IV IV with the value 𝑖 of some counter, whose combination we shall
notate as IV + 𝑖 . Most commonly, the counter value used for block 𝑖
is simply 𝑖 , i.e., it begins at zero and increments for each subsequent
block, and AESv3’s implementation follows this convention. There
is no standard way to compute IV +𝑖 in CTR mode, but the way that
BCTR combines the IV and 𝑖 is by adding 𝑖 to the left-most 32-bits of
IV , interpreting this portion of IV and 𝑖 in little-endian byte order.
If the sum overflows, then no carrying is performed on bytes to
the right of this 32-bit value. The implementation details we have
thus far described do not significantly deviate from a typical CTR
implementation. However, where BCTR mode differs from ordinary
CTR mode is in how the value IV + 𝑖 is used during encryption.
In ordinary CTR mode, to encrypt block 𝑖 with key 𝑘 , you would
compute

plain𝑖 ⊕ encrypt(IV + 𝑖, 𝑘) .

Block Plaintext Ciphertext
0 00000000000000000000000000000000e2d4001cc65d80330cb9487dd527727a
1 01000000000000000000000000000000e2d4001cc65d80330cb9487dd527727a

Figure 8: When encrypted with the randomly generated
128-bit key 〈96 66 08 d1 6f 80 82 86 a7 b7 da 43 96 ee d1 a2〉
and IV 〈48 5b 54 92 0c 80 a6 20 29 6f 95 e5 c5 6a 3d e2〉 using
BAIDUv4’s modified CTR mode, the above plaintext blocks
in positions 0 and 1 encrypt to the same ciphertext.

In BCTR mode, to encrypt block 𝑖 , you compute

encrypt(plain𝑖 ⊕ (IV + 𝑖), 𝑘).
As we will see later, this deviation will have implications to the
security of the algorithm.

While ordinarily CTR mode does not require the final block
length to be a multiple of the cipher’s block size (in the case of
AES, 16 bytes), due to Baidu’s modifications, BCTR mode no longer
automatically possesses this property but rather achieves it by
employing ciphertext stealing [36]. If the final block length 𝑛 is
less than 16, BAIDUv4’s implementation encrypts the final 16 byte
block by taking the last (16−𝑛) bytes of the penultimate ciphertext
block and prepending them to the 𝑛 bytes of the ultimate plaintext
block. The encryption of the resultant block fills the last (16 − 𝑛)
bytes of the penultimate ciphertext block and the 𝑛 bytes of the
final ciphertext block. Note, however, that this practice only works
when the plaintext consists of at least two blocks. Therefore, if there
exists only one plaintext block, then BAIDUv4 right-zero-pads that
block to be 16 bytes.

Key and IV re-use. Since the IV and key are both directly de-
rived from the client key pair, the IV and key are reused until the
application generates a new key pair. This only happens when the
application restarts, such as when the user restarts the mobile de-
vice, the user switches to a different keyboard and back, or the IME
is evicted from memory. From our testing, we have observed the
same key and IV in use for over 24 hours. There are various issues
that arise from key and IV reuse.

Re-using the same IV and key means that the same inputs will
encrypt to the same encrypted ciphertext. Then, by definition, this
construction is not CPA-secure. Additionally, due to the block ci-
pher’s construction, if blocks in the same positions of the plaintexts
are the same, they will encrypt to the same ciphertext blocks. As
an example, if the second block of two plaintexts are the same, the
second block of the corresponding ciphertexts will be the same.

Weakness in cipher mode. While BCTR mode used by Baidu
does not as flagrantly reveal patterns to the same extent as ECB
mode, there do exist circumstances in which patterns in the plain-
text can still be revealed in the ciphertext. Specifically, there exist
circumstances in which there exists a counter-like pattern in the
plaintext which can be revealed by the ciphertext. These circum-
stances are possible due to the fact that (IV + 𝑖) is XORed with
each plaintext block 𝑖 and then encrypted, unlike ordinary CTR
mode which encrypts (IV + 𝑖) and XORs it with the plaintext. Thus,
when using BCTR mode, if the plaintext exhibits similar counting
patterns as (IV + 𝑖), then for multiple blocks the value ((IV + 𝑖)
XOR plaintext block 𝑖) may be equivalent and thus encrypt to an
equivalent ciphertext.
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1 1: 0
2 2: 0
3 3: 49
4 4: "xxxxx"
5 5: 0
6 7 {
7 1: "app_id"
8 2: "100IME"
9 }
10 7 {
11 1: "uid"
12 2: "230817031752396418"
13 }
14 [...]

Figure 9: Example excerpt of recovered protobuf data en-
crypted by iFlytek on Android, revealing what we had typed
on line 4 (“xxxxx”)

More generally, BCTR mode fails to provide the cryptographic
property of diffusion [44]. Specifically, if an algorithm provides
diffusion, then, when we change a single bit of the plaintext, we
expect half of the bits of the ciphertext to change. However, the
example in Figure 8 illustrates a case where changing a single bit of
the plaintext caused zero bits of the ciphertext to change, a violation
of the property’s expectations. Diffusion is vital so that patterns in
the plaintext are not visible as patterns in the ciphertext.

Forward secrecy issues with static Diffie-Hellman. The use
of a pinned server key means that the cipher is not forward secret,
a property of other modern network encryption ciphers like TLS. If
the server key is ever revealed, any past message where the shared
secret was generated with that key can be successfully decrypted.

Lack of message integrity. There are no cryptographically se-
cure message integrity checks, whichmeans that a network attacker
may freely modify the ciphertext. There is a CRC32 checksum calcu-
lated and included with the plaintext data, but a CRC32 checksum
does not provide cryptographic integrity, as it is easy to generate
CRC32 checksum collisions. Therefore, modifying the ciphertext
would be possible.

4.3 iFlytek-And
We found that some iFlytek-related IMEs use a proprietary encryp-
tion protocol to encrypt keystrokes. We refer to this protocol as
iFlytek-And. This protocol contains a vulnerability that allows net-
work eavesdroppers to fully decrypt encrypted keystrokes. iFlytek-
And transmits keystrokes via encrypted payloads of plain, unen-
crypted HTTP. We also observed that it transmits the current time
in milliseconds since the Unix epoch as the HTTP GET parameter
"time", among others.

Let 𝑠 be the current time in milliseconds since the Unix epoch at
the time of the request. For each request, an 8-byte encryption key
is then derived by first performing the following computation:

𝑥 = (𝑠 mod 0x5F5E100) ⊕ 0x1001111.

The 8-byte key 𝑘 is then derived from 𝑥 as the lowest 8 ASCII-
encoded digits of 𝑥 , left-padded with leading zeroes if necessary, in

1 1 {
2 1: "8f2bc112-bbec -3f96-86ca-652e98316ad8"
3 2: "android_oem_samsung_open"
4 3: "8.13.10038.413173"
5 4: "999"
6 5: 1
7 7: 2
8 }
9 2 {
10 1: "\351\000"
11 2: "\372\213"
12 }
13 4: "com.tencent.mobileqq"
14 7: "nihaocanyoureadthis"
15 16: 10
16 17 {
17 3 {
18 1: 1
19 2: 5
20 }
21 5: 1
22 9: 1
23 }
24 18: ""
25 19 {
26 1: "0"
27 4: "339"
28 }

Figure 10: Example protobuf message transmitted by Sam-
sung Keyboard after typing “nihaocanyoureadthis” using the
Pinyin IME.

big-endian order. The payload of the request is then padded with
PKCS#7 and then encrypted with DES using key 𝑘 in ECB mode.

Since DES is a symmetric encryption algorithm, the same key
used to encrypt a message can also be used to decrypt it. 𝑘 can
be easily derived from 𝑠 and since 𝑠 is transmitted in the clear as
the "time" parameter of every HTTP request whose payload is
encrypted by 𝑘 , any network eavesdropper can easily decrypt the
contents of each HTTP request encrypted in the manner described
above. We found users’ keystrokes and the app into which they
were typing were encrypted using this algorithm (see Figure 9 for
an example payload).

4.4 No encryption
All but one of the 24 IMEs we studied used TLS or one of the above
protocols to encrypt keystrokes. The full list of IMEs and which
protocol they were using is in Table 3. The single exception was
that we found that Samsung Keyboard transmits keystroke data to
the following URL in the clear via HTTP POST:
http://shouji.sogou.com/web_ime/mobile_pb.php?durtot=339&h=

8f2bc112-bbec-3f96-86ca-652e98316ad8&r=android_oem_
samsung_open&v=8.13.10038.413173&s=&e=&i=&fc=0&base=

dW5rbm93biswLjArMC4w&ext_ver=0
The keystroke data is contained in the request’s HTTP payload in
a protobuf serialization (see Figure 10 for an example payload).
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5 Discussion
In this section we discuss the feasibility of our attacks, survey how
the security community has responded to other large-scale vulner-
abilities, and make recommendations to multiple stakeholders to
holistically address apps’ insecure transmissions.

5.1 Feasibility of attacks
Even though we disclosed the vulnerabilities to vendors, some
vendors failed to fix the issues that we reported. Moreover, users
of devices which are out of support or that otherwise no longer
receive updates may continue to be vulnerable. As such, many users
of these apps may continue to be under mass surveillance for the
foreseeable future.

In Table 3, all passively decryptable protocols are particularly at
risk. They require only a single AES or DES computation per block
to attack. Furthermore, these protocols’ traffic can be decrypted in
real-time, and any historically recorded data can be decrypted at
any future time without sending network transmissions that could
reveal the presence of the attack.

For EncryptWall-And and EncryptWall-Win, decrypting a block
requires 16 network round-trips, attacking each bit of a 16-bit block
one at a time. Since blocks can be attacked in parallel, only the num-
ber of network requests, not the latency of the attack, is affected by
the number of blocks, where each block requires at most 4,352 net-
work requests to decrypt. As this attack requires sending network
requests to Sogou’s servers, Sogou and other network operators
may be able to detect the presence of such attacks using realtime
or historical data.

5.2 Related widespread risks and responses
We analyzed a broad sample of the most popular Chinese IMEs,
finding that they are almost universally vulnerable to having their
users’ keystrokes being decrypted by network eavesdroppers. These
findings suggest that insufficient, proprietary cryptography contin-
ues to be used to protect sensitive data transmitted by immensely
popular apps developed by large technology companies. Our work
joins others in suggesting that this issue affects at least the Chinese
ecosystem but perhaps also others.

The security community has addressed widespread, prolific secu-
rity issues before. For example, in light of the Heartbleed OpenSSL
vulnerability, Durumeric et al. [10] performed a massive informa-
tion gathering and outreach study monitoring patching behavior
over time, exposing real attacks attempting to exploit the bug, and
conducting a large-scale vulnerability notification experiment. Sim-
ilarly, the need for monitoring proprietary cryptography use in
app ecosystems is critical. However, the apps that we analyzed use
no common library nor was there a single implementation flaw
responsible for these vulnerabilities. While some of the IMEs did
license their code from other companies, our overall findings can
only be explained by a large number of developers independently
making the same kind of mistake. As such, we conclude that this
is an ecosystem issue that arose from the lack of oversight by a
number of critical stakeholders.

More relevant is the security community response to the practical
need for strong encryption of web traffic revealed by the 2013 Snow-
den revelations. The TLS ecosystem has largely stabilized, with CA

root lists of many major browsers and OSes controlled by voting
bodies such as the Certification Authority Browser Forum. Browsers
warn when submitting web forms over HTTP. Furthermore, ven-
dors such as Google have deployed certificate transparency in their
browsers [29]. Researchers performed Internet-wide surveys look-
ing for HTTPS weaknesses [9, 16, 17, 46]. Search engines prioritize
HTTPS results.

Given the community’s success in promoting HTTPS adoption
through action from a variety of stakeholders, we believe that a
similar strategy is necessary for ensuring that popular desktop and
mobile applications, which handle equally sensitive information,
are using sufficient network encryption. Therefore, we discuss
interventions to address these ecosystem failures that could be
implemented by a number of stakeholders similar to as was done
with addressing insecure HTTP web traffic.

5.3 Recommendations to relevant stakeholders
Individually analyzing apps for this class of vulnerabilities and
individually reporting issues discovered is limited in the scale of
apps that it can fix. First, while we can attempt to manually analyze
some of the most popular IMEs, we will never be able to analyze
every app at large. Second, we might not be able to predict which
apps to look at in the first place. For instance, before we analyzed
the IMEs featured in this report, we never would have expected
that their network transmissions would be so easily vulnerable
to interception. In light of the limitations of the methods that we
employed in this report, in the remainder of this section we discuss
possibilities for how we might systematically or wholesale address
apps which transmit sensitive data over networks without sufficient
encryption.

Users. Users of any Sogou, Baidu, or iFlytek keyboard, including
the versions that are bundled or pre-installed on operating systems,
should ensure their keyboards and operating systems are up-to-date.
Users with privacy concerns should not enable “cloud-based” fea-
tures on their keyboards or IMEs. iOS users with privacy concerns
should not enable “full Access” for their keyboards or IMEs.

IME developers. Use well-tested and standard encryption pro-
tocols, like TLS or QUIC. Make every attempt to provide features
on-device without requiring transmitting sensitive data to cloud
servers.

Mobile device manufacturers. Conduct security audits of third-
party keyboards that you intend to pre-install by default on your
operating systems.

Operating systems developers. On Android devices, installing any
keyboard, regardless of whether or how it communicates with
servers over the Internet, brings up a pop-up with the following:

This input method may be able to collect all the text
you type, including personal data like passwords and
credit card numbers.

The wording of these warning messages is overbroad and does not
necessarily help users distinguish between keyboards that transmit
keystrokes over the network, keyboards that transmit keystrokes
insecurely (using something other than standard TLS) over the
network, and keyboards that do not transmit any data at all.
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iOS devices, on the other hand, sandbox their keyboards by
default. There is a “Full Access” or “open access” permission that
must be explicitly granted to keyboards before they have network
access, among other privileges.Without this permission, third-party
keyboards cannot transmit network data. We recommend Android
also adopt a more fine-grained permission model for keyboards.

Furthermore, the vulnerable apps that we studied transmit data
using low level socket APIs versus higher level APIs that require the
usage of TLS or HTTPS. One might desire that separate system calls
be designed for TLS or HTTPS traffic in addition to the lower level
socket system calls so that devices could implement an UNSAFE_-
INTERNET permission that would be required for apps to use the
lower level system calls while still allowing TLS-encrypted traffic
for apps that do not have this permission.

While this approach may have some merit, it also has certain
drawbacks. It makes sense for situations where apps are untrust-
worthy and the operating system is completely trustworthy, but
there are common situations where the operating system could be
not as or even less trustworthy than apps that it is running. One
common case would be a user who is running an up-to-date app
on an out of date operating system, possibly because the user’s
device is no longer receiving operating system updates. In such a
case, the app’s implementation of TLS is more likely to be secure
than that of the operating system. Furthermore, a user’s operating
system may be compromised by malware or otherwise be untrust-
worthy in itself. Introducing a TLS system call would centralize
the encryption of all sensitive data and grant the operating system
easy visibility into all unencrypted data. In any case, innovating in
areas of encryption is an important right of application developers,
and it may not make sense to stifle apps like Signal because of their
use of end-to-end or other novel encryption by requiring them to
obtain an UNSAFE_INTERNET permission.

One might alternatively desire for apps at large to not be able
to access the Internet at all. Instead of an UNSAFE_INTERNET
permission, what about introducing an INTERNET permission to
govern all Internet socket access, similar to the “Full Access” permis-
sion which iOS already applies to keyboard apps? Android devices
in fact already have such a permission that apps must request to
use Internet (AF_INET) sockets, but it is not a permission that
is exposed to ordinary users either in the Google Play Store or
through any stock Android user interface, and it is automatically
granted when installing an app. Unfortunately, given all of the in-
terprocess communication (IPC) vehicles on modern smart devices,
restricting Internet socket access may not guarantee that the app
could not communicate over the Internet (e.g., through Google Play
services). GrapheneOS, an open source Android-based operating
system, implements a NETWORK permission. However, denying
this permission can lead to surprising results where apps can still
communicate with the Internet via IPC with other apps [41]. As
such, we recommend that both the developers of Android and iOS
work toward a meaningful INTERNET permission that would ad-
equately inform users of whether an app communicates over the
Internet.

Application store operators. One might call on app stores to en-
force the use of sufficient encryption to protect sensitive data in
transit. App stores already have a number of rules that they enforce

Figure 11: An example of an attestation for Microsoft
SwiftKey in Google’s Play Store.

through a combination of automated and manual review. Calling
on app stores to enforce sufficient encryption of in-transit sensitive
data is tempting given the resources of the companies operating
the app stores. However, failing any other innovation, the same
scaling issues that apply to other researchers studying these apps
will apply to those working for these companies.

Another way for users to gain visibility into the security and
privacy properties of their apps is through the use of developer
attestations, such as the ones that appear in data safety sections
in many popular app stores. Both the Apple App Store and the
Google Play Store collect and display such attestations to varying
extents, including attestations as to what data an app collects (if
any) and with whom it is shared (if anyone). Additionally, the Play
Store allows developers the opportunity to attest to performing “en-
cryption in transit”, as shown in Figure 11. These attestations allow
users to clearly see what security and privacy properties an app’s
developer claims it to have and, like privacy policies, they provide
means of redress if violated. We wanted to evaluate whether the
apps that we analyzed lived up to their attestations concerning their
encryption in the app stores in which they are available. Among
the apps that we analyzed, only Baidu IME was available in the
Play Store. At the time of this writing, it does not attest to its data
being encrypted in transit. Although other apps that we analyzed
were available in Apple’s App Store, to our knowledge, this store
does not display an attestation for whether the app encrypts data
in transit. As such, across both the Google Play and the Apple App
stores, attestations were insufficient for compelling the IMEs’ de-
velopers to implement proper encryption or in providing users any
opportunity for redress.

In light of the above findings, we believe that users would benefit
from the following recommendations: (1) that app store operators
require developers to attest to whether or not an app encrypts
data in transit, (2) that app store operators display not only when
developers attest to all data being encrypted in transit but also
display a warning when they fail to, and (3) that app store operators
require apps in certain sensitive categories, such as keyboard apps,
to either positively attest to encrypting all data in transit or to attest
to not transmitting any data at all.

Since most of the apps that we found perform some type of
encryption, even if it were wholly inadequate, one might wonder
if attesting that data is merely “encrypted” is enough, since the
data arguably did have some manner of encryption applied to it
during transit. The Play Store provides some guidance on this topic.
Under the question — “How should I encrypt data in transit?” — the
documentation notes: “You should follow best industry standards
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to safely encrypt your app’s data in transit. Common encryption
protocols include TLS (Transport Layer Security) and HTTPS.”

Another issue with attestations is that they provide no guarantee
that an app behaves as its developers attest, as developers can, after
all, make false attestations. While we wish that attestations could
guarantee that an app sufficiently implements proper cryptography
to the same extent that a permission system can guarantee an app
does not use a microphone, false attestations provide an oppor-
tunity for redress. For instance, apps which are found to violate
attestations could be subject to removal from app stores. Further-
more, apps which violate attestations could be subject to fines by
regulatory bodies such as the FTC. Finally, apps which violate the
attestation could be liable to civil suits.

While the apps we analyzed were predominantly available from
Chinese app stores, we equally recommend that Chinese app stores
adopt these recommendations in addition to the Apple App Store
and the Google Play Store. Moreover, while this report focuses
on the problem of poor encryption practices in Chinese apps, the
problem to varying extents applies to apps of all other provenances.

6 Conclusion
This work is the first comprehensive network security analysis
of the Chinese IME keyboard ecosystem. Our results demonstrate
that the vast majority utilized independently-developed, non-TLS
transport encryption protocols to protect keystrokes in transit. In
the majority of cases, these encryption protocols were vulnerable
to decryption by a network eavesdropper, potentially revealing
hundreds of millions of users’ keystrokes to third parties.

This work contributes to the growing body of evidence high-
lighting a significant, yet understudied, class of apps that rely on
insecure, custom-built cryptography. Despite the general shift to-
ward TLS, we discovered that many highly popular cloud-based
keyboard apps, which process extremely sensitive data, fall into
this class and can have their encryption easily compromised by
network eavesdroppers. By examining these apps, our study helps
to better define this class, dispelling misconceptions that these apps
are neither widely popular nor developed by major technology
companies, allowing for researchers to effectively prioritize and
address the unique security challenges posed by these apps.

6.1 Future work
Our results generally demonstrate a larger need to analyze Chinese
apps and the Chinese Internet ecosystem at large. The Google Play
Store and Apple App Store ecosystems, for instance, are commonly
studied by privacy and security researchers [12, 30, 51, 53], but
many Chinese app stores are overlooked, despite that many popular
Chinese apps havemore users than their counterparts on the Google
Play Store. While the vulnerabilities we discovered were mostly
nontrivial to find and took substantial analysis to attack, most could
have been discovered by any skilled security researcher analyzing
these apps. A researcher studying network traffic from users of
Chinese devices could also have identified non-standard traffic.

While our work focused on apps from the Chinese ecosystem,
there is preliminary evidence that apps from other ecosystems may

be equally understudied and employ similarly problematic cryp-
tography. As examples, a 2017 analysis of the popular Japanese-
developed LINE Messenger resulted in attacks on the app’s propri-
etary end-to-end cryptography [13], and a 2023 survey of promi-
nent Latin American apps found multiple issues relating to the
transmission of sensitive data without encryption [27].

To address the need to study understudied ecosystems more
broadly, automated tools could also work to detect insecure traffic
at large. Longitudinal TLS telemetry has largely been focused on
web-based perspectives, and the mobile perspective is often over-
looked, despite the increasing dominance of mobile traffic globally.
Although there are some research projects that survey TLS usage
in Android mobile apps at scale, there is no public longitudinal data
from these projects (i.e., they are run as one-off studies), and many
focus on the Google Play’s Android ecosystem, thereby excluding
the Chinese mobile Internet [15, 42]. Another direction for future
work could involve public longitudinal TLS telemetry for popu-
lar mobile applications globally, via automated static or dynamic
analysis at scale.
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